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We present an efficient method to solve numerically the equations of dissipative dynamics
of the binary phase-field crystal model proposed by Elder et al. [K.R. Elder, M. Katakowski,
M. Haataja, M. Grant, Phys. Rev. B 75 (2007) 064107] characterized by variable coefficients.
Using the operator splitting method, the problem has been decomposed into sub-problems
that can be solved more efficiently. A combination of non-trivial splitting with spectral
semi-implicit solution leads to sets of algebraic equations of diagonal matrix form. Exten-
sive testing of the method has been carried out to find the optimum balance among errors
associated with time integration, spatial discretization, and splitting. We show that our
method speeds up the computations by orders of magnitude relative to the conventional
explicit finite difference scheme, while the costs of the pointwise implicit solution per
timestep remains low. Also we show that due to its numerical dissipation, finite differenc-
ing can not compete with spectral differencing in terms of accuracy. In addition, we dem-
onstrate that our method can efficiently be parallelized for distributed memory systems,
where an excellent scalability with the number of CPUs is observed.

Crown Copyright � 2008 Published by Elsevier Inc. All rights reserved.
1. Introduction

Continuum/field theoretical models have been used widely to address phase transitions in complex systems, including
magnetic phase transitions, condensation, phase separation, and crystallization [1–9]. A very promising new field theoretical
approach to crystallization of undercooled liquids is the Phase-Field Crystal (PFC) model, which addresses freezing on the
atomistic/molecular scale [10,11]. The PFC method is a close relative of the classical density functional theory (DFT) of crys-
tallization [12]: one may derive it by making a specific approximation for the two-particle direct correlation function of the
liquid [11] in the Ramakrishnan-Yussouff expansion of the free energy functional of the crystal relative to the homogeneous
liquid [12]. One arrives then to a free energy functional of the Swift-Hohenberg (SH) kind [13]. (In two dimensions, a Braz-
ovsky type free energy functional, valid for triangular lattice emerges [14].) Unlike the original SH model, in the PFC the order
parameter is the number density, thus conserved dynamics is assumed to apply [10,11]. Remarkably, the PFC description
includes automatically the elastic effects and crystal anisotropies, while addressing interfaces, dislocations and other lattice
2008 Published by Elsevier Inc. All rights reserved.
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defects on the atomic scale [10,11,15]. It also has the advantage over traditional atomistic simulations (such as molecular
dynamics), that it works on the diffusive time scale, i.e., processes taking place on about a million times longer times than
the ones molecular dynamics simulations are able to handle can be addressed. Thermal fluctuations can be incorporated into
the PFC similarly to conventional field theory via adding fluctuation–dissipation noise to the governing equations. Although,
due to its atomistic nature, the PFC technique cannot be easily used to model large scale crystalline structures, it has already
demonstrated its high potential for modeling dendrites, eutectic structures, polycrystalline solidification, grain boundaries/
dislocations, epitaxial growth, crack formation, etc [15]. To address complex solidification morphologies, such as dendritic
and eutectic structures, one needs a minimum two-component formulation of the PFC. Very recently, Elder et al. have pre-
sented a binary version of the PFC model [15,16]. However, the numerical solution of the binary PFC model is rather demand-
ing: even if the direct correlation function of the liquid phase is approximated only to the fourth order in the Fourier space,
sixth order stochastic partial differential equations (PDE) need to be solved. More accurate approximations or more complex
crystal strucutres yield higher order PDEs. Numerical solution of such equations requires advanced techniques as demon-
strated for the single-component case [10,11,17]. It is worth noting that an extra difficulty arises in the binary PFC model:
in its full formulation [16], variable coefficients appear in the equations of motion, which cannot be efficiently handled by
the numerical methods applied for the single-component case. A different approach is thus required to model binary solid-
ification by the PFC method. Various approaches might be possible at this stage. For example, a combination of the coarse
grained formulation based on the renormalization group technique with adaptive gridding can certainly enhance substan-
tially the simulation domain [18–20]. Unfortunately, a coarse grained version is unavailable yet for the binary PFC. Another
possibility is to apply advanced numerical techniques to solve the binary PFC equations.

Recently, the operator splitting techniques are considered as being among the most efficient ones for solving complex PDEs
applied in physics [21,22]. A broad range of problems has been addressed by such methods, including the Navier-Stokes
equation [23,24], the Hamilton-Jacobi equation [25,26], and advection–diffusion problems [27,28]. In these methods, the
spatial differential operator is split into a sum of sub-operators that have simpler forms and can be handled easier. Accord-
ingly, the original problem is replaced by a sequence of sub-problems solved numerically. This procedure is efficient though
gives rise to some amount of error (splitting error, whose order can be often theoretically estimated [29]). This error is
accompanied with the error emerging from the numerical methods used for solving the PDEs of the sub-problems (numer-
ical error). The interaction of these two types of errors determines the total error of the solution. As a result, the method of
discretization should be chosen with some care to avoid order reduction and unnecessary loss of accuracy, as investigated
recently [30]. Keeping these in mind, the operator splitting methods are considered as promising candidates for solving effi-
ciently the high-order, non-linear PDEs of the binary PFC model.

In this paper, we are going to apply an advanced operator splitting technique to solve the binary PFC equations efficiently.
The rest of the paper is structured as follows. In Section 2, we briefly recall the binary PFC equations, and describe the numer-
ical techniques we find propose. In Section 3, we specify the computational resources used, while in Section 4, we present a
detailed analysis of the accuracy/efficiency of these methods under conditions leading typically to dendritic growth mor-
phology. Efficiency of the applied numerical methods on parallel computers with distributed memory is also addressed. Fi-
nally, a few concluding remarks are made in Section 5.

2. Binary PFC equations and numerical formulation

2.1. Binary PFC theory

In deriving the binary PFC model, the starting point is the free energy functional of the binary perturbative DFT, where the
free energy is Taylor expanded relative to the liquid state (denoted by subscript L) up to 2nd order in density difference (up
to two-particle correlations) [16]:
F
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where BS; t;v ; c;w and u are constant model parameters, while BLðdNÞ and RðdNÞ represent the variable coefficient part in the
kinetic equations as specified below.

Assuming a substitutional diffusion between species A and B, i.e., that the same M mobility applies for the two species, the
dynamics of the fields n and ðdNÞ decouple. Assuming, furthermore, that the mobility coefficient is a constant, the respective
equations of motions have the form [16]:
on
ot
¼ Mer2 dF

dn
; ð3Þ

oðdNÞ
ot
¼ Mer2 dF

dðdNÞ ; ð4Þ
where dF
dv ¼ oI

ovþ
P

ið�1Þiri oI
oriv

is the first functional derivative of the free energy with respect to field v [32], and I is the inte-
grand of Eq. (2), i is a positive integer, while the respective effective mobility is Me ¼ 2M=q2

L . Expanding BL;BS and R in terms
of ðdNÞ with coefficients denoted as BL
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inserting the respective form of I into Eqs. (3) and (4), one arrives at
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Eqs. (5) and (6) will be solved numerically after adding a conservative noise (a random flux) to them that represents the ther-
mal fluctuations.

Finally, we briefly outline the physical meaning of the model parameters. The driving force of crystallization can be en-
hanced by either lowering DB ¼ BL

0 � BS
0 (lowering the temperature), or increasing the initial number density �n (increasing

the pressure), or by changing the initial composition of the liquid phase dN. The magnitude of parameter t is determined
by the interplay of the appropriate Taylor coefficient of the ideal gas term in the free energy with the 0th order contribution
from the three-particle correlation, while the magnitude of v follows from the Taylor coefficient for the logarithmic term in
the ideal gas contribution. The interatomic distance may be tuned via parameters R0 and R1, of which the latter determines
the composition dependence of the interatomic spacing. The tendency towards liquid/solid phase separation can be tuned by
changing w, while the length scale of phase separation is determined by the interplay of L;w, and u.

2.2. The numerical scheme

In order to simplify the complex equations of motion [Eqs. (5) and (6)], we apply differential splitting prior to
discretization.

2.2.1. Operator splitting
We decompose the spatial differential operator in the sum of two operators as follows:
on
ot
¼ ðA1 þ A2Þn; ð7Þ

oðdNÞ
ot
¼ ðB1 þ B2ÞðdNÞ: ð8Þ
while sub-operators A1;A2;B1 and B2 have the form:
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A2n ¼ C1r2nþ C2r4nþ C3r6n; ð10Þ
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B2ðdNÞ ¼ Me½wr2ðdNÞ � L2r4ðdNÞ�; ð12Þ
where C1;C2 and C3 are constants to be defined later.
The motivation for this specific choice of split operators is that, with appropriate spatial discretization schemes, it leads to

algebraic equations of a diagonal matrix form, which can be solved very easily and efficiently in a pointwise manner. To
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achieve this, we collect the problematic (non-linear/variable coefficient) terms into sub-operators A1 and B1, which can be
then solved by explicit FD or spectral schemes (we will present results for the fully spectral approach), while the rest (sub-
problems corresponding to sub-operators A2 and B2) will be handled by implicit spectral methods. As it will be shown, this
specific combination of operator splitting with spectral schemes enables us to use time steps that are substantially larger
than those allowed by the explicit formulation, and also the accuracy of the solution is significantly improved relative to
the finite difference spatial discretization.

2.2.2. Splitting procedure and discretization
There exist several splitting procedures [21,22,29,30,33–35]. In solving the problem, in this work, we rely on the simplest

sequential splitting procedure [29,30]. Combining sequential splitting with the explicit time integration for A1 and B1 and
implicit time integration for A2 and B2 yielding the following equations:
n� ¼ nt þ DtA1nt; ð13Þ
ntþDt ¼ n� þ DtA2ntþDt; ð14Þ
ðdNÞ� ¼ ðdNÞt þ DtB1ðdNÞt; ð15Þ
ðdNÞtþDt ¼ ðdNÞ� þ DtB2ðdNÞtþDt

; ð16Þ
where n� and ðdNÞ� are the solutions of the split sub-problems corresponding to sub-operators A1 and B1.
Note that Eqs. (13) and (15) contain non-linear terms and terms of variable coefficient. In their spatial discretization we

have repeatedly applied fast Fourier transformations (FFTs), differentiation in the spectral space, and inverse fast Fourier
transformations (IFFTs). This approach leads to a numerical formulation that is free of numerical dissipation, and to a solu-
tion that is far more accurate than the solution relying on the finite difference technique. In 2D Fourier space, the discretized
Laplacian corresponds to a multiplication by �4p2ðk2

x þ k2
yÞ, where kx and ky are the discrete wavenumbers. Note, further-

more, that the explicit time integration applied for Eqs. (13) and (15) yields algebraic equations that can be directly written
into a diagonal matrix form and solved thus pointwise via simple back-substitution.

In the case of sub-operators containing only constant coefficient terms (A2 and B2), the 2D spatial discretization has been
made using a spectral differencing scheme:
~ntþDt
ðkx ;kyÞ ¼ ~n�ðkx ;kyÞf1� DtðC122p2ð�k2

x � k2
yÞÞ þ C224p4ðk4

x þ 2k2
x k2

y þ k4
yÞ þ C326p6ð�k6

x � 3k4
x k2

y � 3k2
x k4

y � k6
yÞg

�1
; ð17ÞgðdNÞtþDt

ðkx ;kyÞ ¼
gðdNÞ�ðkx ;kyÞf1þ DtMew22p2ðk2

x þ k2
yÞ þ DtMeL224p4ðk4

x þ 2k2
x k2

y þ k4
yÞg

�1
; ð18Þ
where ~nðkx ;kyÞ and gðdNÞðkx ;kyÞ stand for the discrete Fourier transforms of nðrÞ and ðdNðrÞÞ at the discrete wave vector
k ¼ ðkx; kyÞ.

We emphasize that in a fully explicit treatment the stepsize one may use for time integration is seriously limited. In con-
trast, in the present mixed explicit–implicit formulation, we have some freedom to tune the stability criteria to our favour,
via a proper choice of the constants C1;C2 and C3, while retaining the diagonal matrix form of the algebraic equations. While
the stability of time stepping with the individual sub-operators is a necessary condition, due to a possible interaction of er-
rors this does not necessarily guarantee the overall stability of the scheme [30]. We find though in practice that for the split-
ting of the PFC equations described above, it is sufficient to ensure the stability of stepping with the operators individually.
Next, we are going to examine the stability of the steppings with the individual operators, and give suggestions for the prop-
er choice of the splitting constants C1;C2 and C3.

As a result of sequential operator splitting, and of the spectral implicit treatment of the fourth order term in Eq. (6), the
maximum stable time step is proportional to ðDxÞ2 that compares favorably to the Dt / ðDxÞ4 dependence of a fully explicit
scheme.

The stability of time stepping for Eq. (5) is a more complicated issue, and we also need to address the consistency of the
explicit–implicit stepping.

After some manipulation of our equations it can be shown that we have added the terms DtMe½C1ðr2ntþ1�
r2ntÞ þ C2ðr4ntþ1 �r4ntÞ þ C3ðr6ntþ1 �r6ntÞ� to the fully explicit discretization of the equation. For Dt ! 0 this extra term
converges to zero, so the consistency of the scheme is indeed ensured.

Next we specify the coefficients C1;C2 and C3 of the sub-operator A1 [Eq. (9)] in a way that ensures the stability of time-
steppings.
C1 ¼ jMefBL
0 þ BL

2ðdNÞ2gjmax; ð19Þ
C2 ¼ j2MeBS

0fR0 þ R1ðdNÞg2jmax; ð20Þ
C3 ¼ jMeBS

0fR0 þ R1ðdNÞg4jmax ð21Þ
For every Dt timestep and Dx mesh spacing one may chose these constants so that the explicit terms with linear variable
coefficients are stable. Proper choices of these constants modify the stability criteria. In fact, they push the maxima of the
variable coefficients of the second and the sixth order terms into the range, where the differencing terms are stable at a given
Dt and Dx. Note that all the variable coefficients are positive in practice, therefore, splitting of the fourth order term is not
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required to ensure the stability of the explicit stepping. The stability of the explicit stepping can be assured by setting C1 and
C3 as in Eqs. (19) and (21).

However, stability has to be ensured for the implicit stepping too. The respective stability criterion depends on the wave-
number k and can be formulated as DtMe½C122p2ðk2

x þ k2
yÞ � C224p4ðk2

x þ k2
yÞ

2 þ C326p6ðk2
x þ k2

yÞ
3� > �1, a condition that re-

stricts the value of C2.
Regarding the splitting error, we have found that mixing of the explicit and implicit terms within the numerical scheme

should be avoided as much as possible. Here, we may utilize the fact that the relative variation of the coefficients of the equa-
tions is small, since the change of R ¼ R0 þ R1ðdNÞ that represents the composition dependence of the interatomic spacing, is
small itself (a few percent typically). Then, if C2 is chosen as specified by Eq. (20), the variable coefficient terms are treated
dominantly in an implicit manner, while the explicit part represents just a small correction. For our particular case the value
of C2 given by Eq. (20) satisfies also the stability criterion for implicit stepping.

When applying the above scheme to Eq. (5), the overall stability is limited by the non-linear terms, a restriction, which is
usually much less severe than the explicit time integration of the higher order derivatives present in the equation. In prac-
tice, the timestep is limited by the accuracy of time integration.

Due to the highly non-linear nature of the equations of motion, non-linear instability of the numerical solution might ap-
pear and indeed occurs under various choices of the model parameters. To handle this, we have used a spherical spectral
filter [36] on the non-linear terms in Eq. (6). The filtering has been done by cancelling the frequency components that satisfy
the k2

x þ k2
y > K2 inequality, where K is a constant defined empirically so as to avoid a catastrophic accumulation of errors at

high frequencies.
In Section 4, we are going to compare our method [which we name henceforth a semi-implicit spectral (SIS) approach] to

the explicit FD discretization (EFD) in terms of accuracy, stability and the overall computational efficiency in a massively
parallel environment. For the FD discretization of the Laplacian, we have used the compact formula below [11]:
Table 1
Parame

�n
dN
BL

0
BL

2
BS

0
R0

R1

t
v
c
w
u
L
Dx=Dx0

Dt=Dt0

f0

N

r2fi;j ¼ ½ðfiþ1;j þ fi�1;j þ fi;jþ1 þ fi;j�1Þ=2þ ðfiþ1;jþ1 þ fi�1;jþ1 þ fiþ1;j�1 þ fi�1;j�1Þ=4� 3f i;j�=ðDxÞ2: ð22Þ
2.3. Treatment of noise

We have added a conservative Gaussian noise colored in space to the governing equations in the Fourier space [37], whos
amplitude scales with the time step and the cut-off wavelength [38]. In order to avoid the appearance of unphysically small
wavelengths, we have applied a cut-off in the Fourier space that removed the wavelengths shorter than the interatomic
distance.

3. Numerical implementation/computing

Parallel C codes relying on the MPI protocol have been developed to solve the governing equations numerically on an
N � N rectangular grid, using both the SIS and the EFD schemes. To optimize the performance, we have developed a parallel
FFT code based on the FFTW3 library [39]. We have prescribed periodic boundary conditions.

The initial conditions for simulations of binary solidification have been created as follows. First, the simulation window
has been filled uniformly with appropriate total number density n ¼ �n and number density difference values ðdNÞ ¼ dN spec-
ified in Table 1, representing the initial undercooled liquid. Next, in the case of dendritic structures, we have placed a small
ters used in computing Fig. 1.

ðaÞ; ðbÞ ðcÞ ðdÞ

0.0092 0.0096 0.0
0.0904 0.0904 10�6

1.04 1.04 1.0248
�1.8 �1.8 �1.8
1.0 1.0 1.0
1.0 1.0 1.0
0.25 0.25 0.25
�0.6 �0.6 �0.6
1.0 1.0 1.0
0.0 0.0 0.0
0.088 0.088 0.0
4.0 4.0 4.0
1.2 1.2 1.2
1.0 1.0 1.0
32.0 32.0 32.0
10�6 10�6 10�5

8,192 8,192 2,048
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crystalline cluster of 13 density peaks to the center on a hexagonal lattice (central atom+first and second neighbor shells) of
suitable interatomic spacing, that has acted as a crystal seed. In the case of eutectic solidification, we have used two seeds of
different compositions [ðdNÞ ¼ �0:3 and 0.3, respectively] containing 6 density peaks each (central atom + first neighbor
shell), placed in contact with each other at the center of the simulation window.

The numerical investigations presented in this paper have been performed using two PC clusters: (i) One at the Research
Institute for Solid State Physics and Optics (RISSPO), Budapest, Hungary, that consists of 24 PCs, equipped with two 2.33 GHz
Intel processors of 4 CPU cores (192 CPU cores in all on the 24 nodes), 8 GB memory/node, and is equipped with 10 Gbit/s
(InfiniBand) communication, and (ii) another hosted by the Brunel Centre for Advanced Solidification Technology (BCAST),
Brunel University, West London, UK, which consists of 20 similar nodes (160 CPU cores), however, with 1 Gbit/s (standard
GigaBit Ethernet) communication in between.

4. Results and discussion

The proposed SIS method will be compared with EFD discretization under conditions that lead to dendritic solidification,
a case that clearly demonstrates the potential of the PFC method. Dendritic and eutectic structures grown using the SIS ap-
proach are shown in Fig. 1. The respective choices of parameters are given in Table 1. Here f0 is the amplitude of the con-
servative Gaussian colored noise added to the equations of motion, while a cut-off for wavelengths smaller than k ¼ 7Dx has
been made in Fourier space. The same spatial steps and 32 times larger time steps have been chosen than in [16], where
Dx0 ¼ 1:1 and Dt0 ¼ 0:05. (We note here that at the time and spatial steps used in [16] the EFD computations are just stable.)
The computations for dendritic structures [Fig. 1(a) and have been performed on 20� 4� 2 ¼ 160 CPU cores of the RISSPO
Fig. 1. Illustrative phase-field crystal simulations for solidification in binary alloys. (a) Number density difference ðdNÞ map of a solutal dendrite. (b) Total
number density n map of the small square area of black border on the right hand side of the downward pointing arm of the dendrite shown in panel (a). (c)
A more compact dendritic structure grown at a higher driving force achieved by increasing the initial liquid density relative to panel (a). (d) Eutectic
structure obtained by reducing the initial number density �n and number density difference dN relative to panel (a). The snapshots shown have been taken
after (a), (b) 92,160, (c) 55,000, and (d) 498,000 time steps. The model parameters used in these simulations are listed in Table 1.
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cluster equipped with 10 Gbit/s communication, and took about 4 days each. The eutectic computation [Fig. 1(c)] has been
performed on 40 CPU cores with 1 Gbit/s communication, and took �10 days.

Note that in Fig. 1(a) and (c) the primary dendrite arms show an almost perfect six-fold symmetry: the lengths of the six
dendrite arms differ by only �0.1%. Using the SIS scheme, the anisotropy induced by the discretization on a rectangular lat-
tice is negligible, which enables us to predict the morphology of dendritic/eutectic self-organized structures accurately.

4.1. Analysis of the numerical solution

We are unaware of any non-trivial analytical solution for the binary PFC equations that could be used as a reference in
computing the numerical error. Because of the practical difficulties [the EFD computations are severely restricted by the fact
that the stability criterion for explicit discretization requires Dt / ðDxÞ6], one can neither obtain a sufficiently accurate EFD
solution that could serve as reference. Therefore, first we perform an empirical convergence test (see e.g. [41]) to investigate
whether there exists a limiting solution, to which the SIS solutions converge for decreasing Dx and Dt. Finding such a behav-
ior, we use the limiting solution as reference in defining the numerical error. We also attempt to clarify whether the SIS and
EFD methods converge to each other for decreasing spatial and time steps in the Dx and Dt domain available for numerical
simulations.

Along these lines, first, we investigate the effect of spatial and time resolution on the numerical solutions obtained by the
SIS method. Since we are interested in a quantitative comparison between computations made with different time and spa-
tial steps and wish to avoid differences of stochastic origin, in all the following simulations, we have switched off the noise
that represents the thermal fluctuations. To explore the resolution dependence, we have performed a series of simulations
with the proposed numerical scheme on a relatively small physical domain of dimensionless area 281:6� 281:6 (consisting
of about 6600 atoms). This size is a result of a compromise: It is big enough to have bulk crystalline properties at the center of
the growing crystallite at dimensionless time t ¼ 768, and is small enough to allow a few refinement steps in the spatial res-
olution even for the EFD method: For our study, we have chosen the spatial steps Dx ¼ ð1=4;1=3;1=2;2=3;3=4, and 1Þ � Dx0.
For each of these spatial steps SIS simulations have been performed with the time steps Dt ¼ 2j � Dt0, where j ¼ 0;1;2; . . . ;8.
For comparison, we have made explicit FD computations with the same spatial steps, however, with the largest time steps,
allowed by the numerical stability of the explicit scheme. Unfortunately, due to the limited computational capacity available
and the very small time steps occurring due to the high-order differential operators, we were unable to perform the EFD sim-
ulation for the finest mesh spacing.

This analysis of the numerical solution has been performed with the model parameters used in computing the dendritic
structure shown in Fig. 1(a), however, without adding noise to the equations of motion ðf0 ¼ 0Þ.

Characterization of the solution: We find that crystallization is fairly isotropic on this size scale [Fig. 2(a)]. Accordingly, we
use the diameter of the crystal d at dimensionless time t ¼ 768 as a measure of the average growth rate, a quantity that not
only characterizes the solution on a mesoscopic scale, but also reflects the time evolution of the solution. Due to the atom-
istic nature of the crystal structure and the gradual transition between the crystal and the homogeneous liquid, the diameter
of the crystalline particles has to be defined with some care. Various methods can be devised to deduce the linear size of a
crystalline particle. In this work, the diameter of the roughly circular particles has been calculated by connecting the maxima
of the neighboring total number density peaks along the horizontal centerline of the particle (lying on a crystal plane) by
straight lines, and then taking the intersection of the resulting ‘‘peak envelope” with the arbitrary threshold of n ¼ 0:075
chosen as the limit between the solid and liquid phases. [See Fig. 2(b). Note also the diffuse solid–liquid interface and the
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Fig. 2. High resolution SIS solution used as reference: (a) snapshot of the total number density at time t ¼ 768 for a simulation performed on a 1024� 1024
grid with Dx ¼ Dx0=4 and Dt ¼ Dt0; (b) the respective total number density n distribution along the horizontal centerline. The level n ¼ 0:075 chosen to
define the diameter of the crystalline particle is marked by the dashed horizontal line.
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close similarity to the number density profiles obtained from molecular dynamics simulations [42–45].] Since the uncer-
tainty of the peak positions is � 2Dx on both ends of the diameter, which in turn is � 175Dx0, the relative error of the diam-
eter is �2Dx=ð175Dx0) that varies in the ± 0.3% to ± 1.1% range. Besides the particle diameter, we use the interatomic distance
a (distance between the neighboring number density peaks) to characterize the periodic nature of the solution in the crystal,
probing it on the atomic scale. It has been determined by measuring the total length of 10 density waves in a crystal plane
ð10a 	 68Dx0Þ. Here the reading error is about 2Dx for the whole length, 10a. So the relative error is � �Dx=ð68Dx0Þ, which
ranges between ±0.4% and ±1.5%. We note that the investigated quantities (a and d) have physical significance: the inter-
atomic distance reflects the effective atomic interaction the approximate direct correlation function of the PFC model real-
izes, while the average growth rate monitors the kinetics of the phase transition.

Results: The time and spatial step dependencies of these quantities are presented in a normalized form in Fig. 3. Remark-
able features of the SIS results observed in the investigated Dt and Dx ranges are as follows:

(i) The interatomic distance ½a0 ¼ 7:438� ð1:0� 0:004Þ� is virtually independent from both the spatial and time steps
[Fig. 3(a)];
(ii) The diameter of the crystalline particle at dimensionless time t ¼ 768 converges to d0 ¼ 192:0� ð1:0� 0:003Þ for
Dt ! 0, independently of the spatial step [see Fig. 3(b) and (c)].

The virtual independence of the interatomic distance from Dx is a direct consequence of the fact that the solutions ob-
tained at different spatial resolutions fall on top of each other with a high accuracy (see Fig. 4). This independence of the
SIS solution of spatial steps (in the investigated range) implies convergency for Dx! 0, as might be expected from the expo-
nential convergence of the Fourier-spectral spatial discretization [46]. Indeed, if Dx > Dx0 is used, we see deviations from the
closely matching solutions shown in Fig. 4. The particle diameter at fixed time (or the average growth rate) seems to be also
independent of the spatial step in the Dx 2 ½1�Dx0 range. However, it depends on the time step, and converges to a limiting
value for Dt ! 0: the difference of diameters obtained with the smallest two time steps is �0.1%. Remarkably, even for a time
step as large as Dt ¼ 32� Dt0, the average growth rate is only �3.3% less than this limiting value. These findings suggest the
convergence of the SIS solutions to a limiting solution for Dx! 0 and Dt ! 0. We note here that the Fourier-spectral spatial
discretization is highly accurate, and in our solutions the numerical error originating from the time stepping seems to dom-
inate. This is hardly surprising considering that the backward Euler time stepping is accurate only to the first order. It is thus
expected that the application of time stepping methods that are accurate to higher orders could further improve the accu-
racy/efficiency of the SIS approach.

Comparison to explicit finite difference method: The total number density ðnÞ and normalized number density difference
ðdNÞ profiles obtained by the EFD method for three different spatial steps (Dx0=3;Dx0=2, and Dx0) are shown in Fig. 5.
Remarkably, we see a rather strong dependence on the spatial resolution, though convergence is observed towards the smal-
ler spatial steps. Unfortunately, due to its prohibitively large computation time, we were unable to perform the simulation
for Dx0=4 and below, even for the very small physical domain chosen for the numerical test. (Note that in these EFD com-
putations the time step had to be varied to ensure numerical stability.) It is remarkable, that a much finer spatial resolution
would be needed to ensure the same level of spatial accuracy as provided by Fourier-spectral scheme used in the SIS method.
However, such EFD computations would only be possible for systems of very small physical size and even then only very
short physical times could be covered.
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We compare the EFD predictions for the interatomic distance and the diameter to those from the SIS method in Fig. 3. In
agreement with the results in Fig. 5, the EFD data for both the a and d vary strongly with resolution. For the interatomic dis-
tance, the EFD results approach those from the SIS method from below: The interatomic distances predicted by the two
methods seem to converge to values that fall within the range of the combined errors. Remarkably, at Dx ¼ Dx0, the EFD com-
putation underestimates the interatomic distance by �6%. We wish to note here that the dependence of the EFD results on
resolution is likely to be reflected in other physical properties such as the bulk modulus, compressibility, and the free energy
realized in the numerical computations. (Note that unlike the conventional phase-field methods, where thermodynamics of
the bulk phases is an input whos accuracy is usually independent from the accuracy of the applied numerical method, here
even the free energy of the bulk phases depend on the accuracy of the numerical scheme applied.) The EFD results for the
diameter of the crystalline particle underestimate those from the SIS method by�7 to 15%, though they seem to approach the
SIS limit ðd0Þ for decreasing time steps. A linear extrapolation of the EFD data to Dx ¼ 0 yields an �4% lower limiting value for
the diameter than the corresponding SIS prediction. One cannot, however, rule out that a better convergence would be ob-
served eventually were the spatial step decreased further. We note also that convergence in the empirical test might be lim-
ited by the cumulative round-off error, a type of error that becomes especially enhanced for the EFD scheme with decreasing
spatial and time steps.

In order to quantify further the differences between the solutions obtained with the same spatial resolution by the two
numerical methods, we introduce the scaled L2 difference of the Fourier transform of the SIS solution relative to the Fourier
transform of the EFD solution, defined as
rv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðvSIS � vEFDÞ

2i
q

maxðvEFDÞ �minðvEFDÞ
; ð23Þ
where v ¼ n̂ or dðdNÞ, while the quantities with hat denote the Fourier transform of the respective fields. Note that it is advan-
tageous to compute the scaled L2 difference for the Fourier transforms, and not for the fields themselves, since both fields are
periodic in the solid state, and deviations in the interatomic spacings for the SIS and EFD solutions are also observed. The
Fourier transforms of the solutions have been obtained by 2D FFT. The respective results are presented in Table 2. We find
that the scaled L2 difference decreases with decreasing spatial step for both fields [n̂ and dðdNÞ].



Table 2
Scaled L2 difference of the Fourier spectra.

Dx rn̂ rdðdNÞ

Dx0 9:8451� 10�2 10:9165� 10�2

3=4Dx0 9:2025� 10�2 9:8817� 10�2

2=3Dx0 7:6462� 10�2 7:6462� 10�2

1=2Dx0 5:5147� 10�2 6:1442� 10�2

1=3Dx0 2:3969� 10�2 2:8141� 10�2
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4.2. Computational efficiency

Since these calculations are rather costly, it is of interest to compare how efficiently the SIS and EFD methods can be par-
allelized. (We performed this part of our study on the RISSPO cluster.) First, we determine the effective computational time s
one needs to compute one time step in a grid point for both methods, which we relate to the full computational time, tcomp

needed to solve the equations of motion on an N � N grid, and for Nt time steps as follows: s ¼ tcomp=ðN2NtÞ. The results are
displayed as a function of the number of the CPU cores in Fig. 6(a). It appears that the computational speed ð1=sÞ is essen-
tially comparable for the SIS and EFD methods, and except for the SIS scheme for small grid sizes on large number of CPU
cores, it scales roughly linearly with the number of CPU cores. This means that the computational cost for calculating a time
step at a grid point is comparable for SIS and EFD (the EFD cost is smaller by about a factor of �2.5 in general).

Next, we compare how fast one can obtain solutions of the same time and spatial resolution using the SIS and EFD meth-
ods. For this, we perform computations of the same physical size, up to unit physical time with different spatial resolutions
[Dx ¼ ð1=4;1=2;1Þ � Dx0], and at the maximum time step that is stable and accurate enough. The results are compared in
Fig. 6(b). While at a modest spatial resolution ðDx ¼ Dx0Þ the computational time for the SIS method is about an order of
magnitude smaller than for the EFD scheme (due to the larger time step allowed), for Dx ¼ Dx0=2 it grows to almost 3 orders
of magnitude, while for Dx ¼ Dx0=4 the SIS computation of the same task is nearly 5 orders of magnitude faster. It is worth
noting furthermore that, even at the same Dx value, the SIS computation provides a considerably more accurate interatomic
distance than the EFD scheme (see Fig. 3), suggesting that the SIS method shall be even more preferable, if computations of
the same effective numerical error are compared. Considering that the same accuracy of the interatomic distance, which the
SIS scheme achieves at Dx0 cannot be achieved by the EFD method even at Dx0=4, the gain by applying the SIS method is
more than 5 orders of magnitude in the computation time. It is also remarkable that except for small grids on a large number
of CPU cores, the computation time of SIS scales with the number of the CPU cores as well as for the EFD method
ðtcomp / N�1

coreÞ. For example, in the case of our largest computations (on a 16,384 � 16,384 grid), we have found this type
of scaling up to our maximum number of CPU cores, 192, connected with high speed communication.
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4.3. A couple of practical remarks

(a) In the SIS scheme, the addition of colored noise to the equations of motion is fairly straightforward, and does not lead
to extra calling of FFT/IFFT.
(b) We find that an accurate solution of the PFC equations is important since the physical properties (e.g. interatomic dis-
tance, compressibility, bulk modulus, phase diagram, growth velocity, etc.) appear to depend strongly on computational
accuracy. It is in this high accuracy limit required for quantitative calculations, where the proposed SIS method offers the
most.
(c) The proposed SIS method is expected to be comparably efficient for equations of motions containing higher oder PDEs
that emerge if higher order approximations of the two-particle direct correlation function are incorporated into the PFC
model.

5. Summary

We have presented an efficient semi-implicit spectral scheme based on a specific operator splitting technique for solving
numerically the equations of motion of the binary phase-field crystal model. We have demonstrated the following.

(i) For decreasing time and spatial steps, the solution obtained with the proposed semi-implicit scheme converges to a
limiting solution.

(ii) In the range, where computations with the explicit finite difference scheme can be performed, results from the explicit
scheme approach those from the semi-implicit spectral scheme with decreasing time and spatial steps.

(iii) Significant acceleration of the computations can be expected if the proposed semi-implicit spectral scheme is used,
especially if accurate solutions are needed, in which case the new method can be several orders of magnitude faster
than the conventional explicit finite difference scheme.

(iv) Since the proposed method is implicit in the Fourier space, it can be parallelized efficiently: in the investigated size
and CPU core number ranges, the computational time scales roughly with the inverse of the number of the CPU cores.

We expect that by applying higher order time stepping, the efficiency of the method can further be improved. Work is
underway into this direction.
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