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We address crystal nucleation and fcc-bcc phase selection in alloys using a multiphase field model that

relies on Ginzburg-Landau free energies of the liquid-fcc, liquid-bcc, and fcc-bcc subsystems, and

determine the properties of the nuclei as a function of composition, temperature, and structure. With a

realistic choice for the free energy of the fcc-bcc interface, the model predicts well the fcc-bcc phase-

selection boundary in the Fe-Ni system.
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Freezing of undercooled liquids often starts with the
nucleation of metastable crystalline phases. In agreement
with Ostwald’s step rule, atomistic simulations imply that
the first crystal structure to form is the one whose free
energy is the closest to the free energy of the liquid [1]. In
alloys this represents a multiphase multicomponent solidi-
fication problem. To date, the most efficient method used
for addressing such problems is the multiphase field theory
(MPFT) [2]. It is, however, only as accurate as the free
energy functional it relies on. Early versions [2] of the
MPFT predicted that the third phase inevitably appears at
the interface between two bulk phases, a behavior origi-
nating from the specific free energy surface assumed. A
recent version of MPFT eliminated the third phase entirely
at the interface [3]. This is not always in agreement with
real systems: Atomistic simulations for the Lennard-Jones
(LJ) system show that although the stable phase is fcc,
small nuclei have a bcc structure, and even the larger fcc
crystallites have a bcc-like layer at the solid-liquid inter-
face [1,4], results also born out by the classical density
functional theory (CDFT) [5]. These findings are in accord
with the theoretical prediction of Alexander and McTague
that in simple liquids the formation of bcc structure is
preferred [6]. Further simulations for the LJ system imply
that varying the pressure at fixed temperature, the bcc=fcc
phase ratio can be tuned in small clusters [7]. Since pref-
erence for metastable phase nucleation is quite general, it is
desirable to work out microscopic models that can handle
the structural aspects of phase selection during nucleation.

In this Letter, we present such a microscopic model for
competing fcc and bcc structures. The MPFT is supple-
mented with a free energy that is based on the Ginzburg-
Landau (GL) expansion of the two-phase free energies
[8–10], and considers thus the structural aspects of multi-
phase solidification. Our approach is unique in that it
combines crystal structure with thermodynamic and inter-
facial data of real systems. In this respect our MPFT is
more flexible than recent CDFTapproaches [11], which, in
turn, provide a more detailed description of the solid-solid

interface. Herein, we apply the GL free-energy-based
MPFT to predict phase selection in the Fe-Ni system.
The standard MPFT form of the grand free energy of a

binary system relative to the initial liquid is

�� ¼
Z

dr

�X
i<j

�2ij
2
ð�ir�j ��jr�iÞ2 þ �!ð�i; cÞ

�
:

(1)

The differential operator on the right-hand side has the
required symmetries [2]. In this expression �! is the
relative grand potential density and c the concentration.
The sum runs over different (�i;�j) pairs of the structural

order parameters, while
P

j�jðrÞ ¼ 1. When addressing

fcc-bcc competition, without loss of generality, we may
choose �1, �2, and �3 ¼ 1� ð�1 þ�2Þ for the fcc, bcc,
and liquid phases, respectively. These order parameters can
be combined to yield formal analogues of the solid-liquid
order parameter m that describes crystalline freezing, and
the solid-solid order parameter � that monitors the fcc-bcc
transition (Bain’s distortion) of the crystal lattice used in an
advanced CDFT of fcc-bcc transition [5]: � , kmk 2
½0; 1� and c , k�k 2 ½0; 1�, where � ¼ �1 þ�2 and
c ¼ �2=�. The methodology of the MPFT anchors the
free energy surface to the free energies of the bulk phases.
Specifically, the local grand potential density of the multi-
phase system is related to the contributions �!ij of the

two-phase systems as follows:

�!ð�; c ; cÞ ¼ ½1� p12ðc Þ��!13ð�; cÞ
þ p12ðc Þ�!23ð�; cÞ
þ a12ðcÞPð�; c Þg12ðc Þ; (2)

where the interpolation functions pij vary monotonically

between 0 and 1 so that pijð0Þ ¼ 0 and pijð1Þ ¼ 1, whereas

Pð�; c Þ ¼ ½1� p12ðc Þ�p13ð�Þ þ p12ðc Þp23ð�Þ, which
reflects that the solid-solid order parameter is irrelevant
in the liquid state. The first two terms of Eq. (2) interpolate
between the fcc-liquid and bcc-liquid free energies, while
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the third term adds a free energy barrier in between the two
solid phases that disappears in the liquid. The two-phase
contributions can be expressed as

�!i3ð�; cÞ ¼ ai3ðcÞgi3ð�Þ þ pi3ð�Þ�!iðcÞ
þ ½1� pi3ð�Þ��!3ðcÞ;

for i ¼ 1 or 2, which have the shape of a skewed double
well. Here gij are double-well functions, for which

gijð0Þ ¼ gijð1Þ ¼ 0, with a maximum in between, while

the functions�!i represent the grand potential densities of
the ith phase relative to the initial liquid state.

With these definitions, Eq. (2) recovers the relative free
energies of the bulk phases. However, the results for
the nonbulk states depend on the specific choice of these
functions. In the usual application of the MPFT, they
are chosen intuitively. In contrast, here we use forms
deduced from the GL expansion of the two-phase free
energies [8–10], whose forms contain the structural
information:

bcc -liquid: g13 ¼�2ð1��Þ2 and p13 ¼�3ð4� 3�Þ;
fcc-liquid: g23 ¼�2ð1��2Þ2 and p23 ¼�4ð3� 2�2Þ;
bcc-fcc: g12 ¼ c 2ð1� c Þ2 and p12 ¼ c 3ð4� 3c Þ:
The composition dependent model coefficients are inter-
polated as �2ijðcÞ ¼ ð1� cÞ�2ij;A þ c�2ij;B and aijðcÞ ¼
ð1� cÞaij;A þ caij;B, where the constants �2ij;Y and aij;Y
can be expressed in terms of the free energy and thickness
of the equilibrium interface between phases i and j for pure
component Y. Unlike the CDFT, where the time-averaged
particle density is the order parameter, in our model the
solid-liquid transitions are monitored by the reduced
Fourier amplitude of the dominant density waves (a
single-mode approach), whereas the fcc-bcc transition is
monitored by an order parameter related to Bain’s distor-
tion. The free energy of the interfaces emerges from bulk
and gradient contributions associated with a continuous
change of these order parameters across the interface.

Since the nucleus represents an extremum of the grand
potential, its properties can be found by solving the Euler-
Lagrange equations [5,9,12]: ���=��i ¼ �ðrÞ and
���=�c ¼ 0, where ���=�� is the first functional de-
rivative of the grand potential difference with respect to the
field �, while the Lagrange multiplier �ðrÞ ensures the
local constraint

P
j�jðrÞ ¼ 1 [13]. The respective bound-

ary conditions are as follows: unperturbed liquid properties
in the far field and zero field gradients at the center. We
assume isotropic interfacial properties, a fair approxima-
tion for metallic systems. This boundary value problem has
been solved numerically by the relaxation method. The
excess free energy of the nuclei has been obtained by
inserting the solution into Eq. (1).

The two-phase limits of the present model have been
tested previously: The GL technique proved successful in

describing (i) the nucleation barrier for fcc structure [9],
(ii) the properties of the bcc-liquid interfaces [8,14], and
(iii) the transition between the bcc and fcc phases [10]. The
chemical part of our model has been tested against atom-
istic simulations for the Cu-Ni system: The parameter free
GL predictions for the order-parameter and nanoscale
concentration profiles are in a remarkable agreement with
the Monte Carlo results [15] (Fig. 1).
Owing to the lack of known equilibrium coexistence

conditions between the bulk fcc and bcc phases, the well-
known LJ and hard-sphere systems are not suitable for a
full testing of our model. Thus, we have chosen the Fe-Ni
system, where from combined experiments and atomistic
simulations a nearly complete input set is available [16].
The least accurate input is the orientation average of the
free energy of the fcc-bcc interface. For Fe, estimates of
�fcc-bcc for different orientations range between
179 mJ=m2 [17] and about twice the solid-liquid interfa-
cial energy (� 672 mJ=m2 [16]), yielding �425 mJ=m2

for the average of the upper and lower limits, which we
take as an estimate of the orientation average. Thus the
energy contribution of the defects at the fcc-bcc interface is
incorporated implicitly in a coarse-grained manner.
First, we present our results for crystal nuclei in Fe,

Fe50Ni50, and Ni (see Figs. 2–4). In panels (a) and (b),
the radial phase-field and concentration profiles are dis-
played. In all cases we observe at least a small amount of
third phase (‘‘surface phase’’) at the solid-liquid interface.
However, the fcc surface layer on bcc nuclei is far less
pronounced than the bcc layer on fcc nuclei [Fig. 5(a)].
With increasing undercooling, the volume fraction (X)
of the third phase increases [Fig. 5(a)], which is reflected
in the nonmonotonic composition dependence of X
[Fig. 5(b)], following from the shape of the respective
liquidus line in the phase diagram. In Fe, nuclei with a
bcc core (composite-bcc type) are significantly preferred to
fcc core nuclei, whereas in Ni, at temperatures accessible
for experiments, composite-fcc nuclei with a bcc surface
layer dominate [see Figs. 2(c) and 4(c)]. The nuclei ob-
served at the 1:1 composition behave similarly to those for
Ni [Fig. 3(c)], however, with some amount of surface
precipitate of Ni at 20% relative undercooling [Fig. 3(a)].
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FIG. 1. Interfacial order-parameter (solid line) and concentra-
tion profiles (dashed line) as predicted by the GL-based phase
field theory (PFT) for the fcc-liquid interface in the Cu-Ni
system. For comparison, the normalized density peaks (squares)
and concentration profile (circles) from Monte Carlo (MC)
simulations [15] are also shown.
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At extremely large undercoolings, composite-bcc nuclei
are preferred for all compositions. At all undercoolings we
studied, composite nuclei are thermodynamically prefer-
able to the respective single-phase nuclei.

Next, we use the present MPFT approach to predict the
phase-selection map for Fe-Ni alloys and compare it to
experiments [18]. Since in metallic systems homogeneous
nucleation has probably never been realized, we assume

heterogeneous nucleation. In the spirit of the highly suc-
cessful free growth limited model of heterogeneous nu-
cleation by Greer et al. [19], the phase-selection boundary
for heterogeneous nucleation is determined by the condi-
tion of equal critical radii for the fcc- and bcc-type nuclei.
The fcc-bcc phase-selection boundary predicted with
�fcc-bcc ¼ 425 mJ=m2 is in a fair agreement with the
experiments (Fig. 6). For comparison, results for the upper
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FIG. 3. Crystal nuclei in Fe50Ni50: Notation is as for Fig. 2.
The respective temperatures are T ¼ 1373:5 and 1183 K for (a)
and 1150 K for (b). Note that kck 2 ½0; 1�.
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FIG. 2. Crystal nuclei in Fe: (a) composite-bcc nucleus at
1449 K [thin lines, square in (c)] and composite-fcc nucleus
at 1441 K [heavy lines, circle in (c)]; (b) composite-bcc nucleus
at 1300 K [triangle in (c)]. (c) Nucleation barrier versus
temperature.
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FIG. 4. Crystal nuclei in Ni: Notation is as for Fig. 2. The
respective temperatures are T ¼ 1382:5 and 1050 K for (a) and
1000 K for (b).
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FIG. 5. Volume fraction of the third phase (’’surface phase’’) in
composite nuclei: (a) Temperature dependence of bcc fraction in
composite-fcc nuclei (heavy lines), and of fcc fraction in
composite-bcc nuclei (thin lines). (b) bcc fraction versus Ni
concentration at different temperatures.
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and lower limits are also shown, which envelope the ex-
perimental fcc-bcc phase-selection boundary.

Summarizing, we have presented a microscopic multi
phase field theory of competing fcc and bcc nucleation that
is anchored to measurable physical properties. Our study
indicates that composite nuclei are preferable to single-
phase nuclei. With a reasonable choice of model parame-
ters, the GL free-energy-based MPFT predicts the
phase-selection map fairly well for Fe-Ni alloys.
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