Diffusion-controlled anisotropic growth of stable and metastable crystal polymorphs in the phase-field crystal model

György Tegze1, László Gránásy1,2, Gyula Tóth3, Frigyes Podmaniczky1, A Jaatinen4, T Ala-Nissila4, Tamás Pusztai1

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
3Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
4Department of Applied Physics, Helsinki University of Technology, Post Office Box 1100, FI-02015 TKK, Finland

We use a simple density functional approach on a diffusional time scale, to address freezing to the body-centered cubic (bcc), hexagonal close-packed (hcp), and face-centered cubic (fcc) structures. We observe faceted equilibrium shapes and diffusion-controlled layerwise crystal growth consistent with two- dimensional nucleation. The predicted growth anisotropies are discussed in relation with results from experiment and atomistic simulations. We also demonstrate that varying the lattice constant of a simple cubic substrate, one can tune the epitaxially growing body-centered tetragonal structure between bcc and fcc, and observe a Mullins-Sekerka/Asaro-Tiller-Grinfeld-type instability.

Topics: Phase field crystal