Orientation field models

Topological defects in two-dimensional orientation-field models for grain growth

Bálint Korbuly1, Mathis Plapp2, Hervé Henry2, James A. Warren3, László Gránásy1,4, Tamás Pusztai1

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2Laboratoire Physique de la Matière Condensée, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
3Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
4BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

Standard two-dimensional orientation-field-based phase-field models rely on a continuous scalar field to represent crystallographic orientation. The corresponding order parameter space is the unit circle, which is not simply connected. This topological property has important consequences for the resulting multigrain structures: (i) trijunctions may be singular; (ii) for each pair of grains there exist two different grain boundary solutions that cannot continuously transform to one another; (iii) if both solutions appear along a grain boundary, a topologically stable, singular point defect must exist between them. While (i) can be interpreted in the classical picture of grain boundaries, (ii) and therefore (iii) cannot. In addition, singularities cause difficulties, such as lattice pinning in numerical simulations. To overcome these problems, we propose two formulations of the model. The first is based on a three-component unit vector field, while in the second we utilize a two-component vector field with an additional potential. In both cases, the additional degree of freedom introduced makes the order parameter space simply connected, which removes the topological stability of these defects.

Topics: Orientation field models, Polycrystalline solidification

Grain coarsening in two-dimensional phase-field models with an orientation field

Bálint Korbuly1, Tamás Pusztai1, Hervé Henry2, Mathis Plapp2, Markus Apel3, László Gránásy1,4

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2Laboratoire Physique de la Matière Condensée, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
3Access e.V., Intzestr. 5, 52072 Aachen, Germany
4BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

In the literature, contradictory results have been published regarding the form of the limiting (long-time) grain size distribution (LGSD) that characterizes the late stage grain coarsening in two-dimensional and quasi-two-dimensional polycrystalline systems. While experiments and the phase-field crystal (PFC) model (a simple dynamical density functional theory) indicate a lognormal distribution, other works including theoretical studies based on conventional phase-field simulations that rely on coarse grained fields, like the multi-phase-field (MPF) and orientation field (OF) models, yield significantly different distributions. In a recent work, we have shown that the coarse grained phase-field models (whether MPF or OF) yield very similar limiting size distributions that seem to differ from the theoretical predictions. Herein, we revisit this problem, and demonstrate in the case of OF models [by R. Kobayashi et al., Physica D 140, 141 (2000) and H. Henry et al. Phys. Rev. B 86, 054117 (2012)] that an insufficient resolution of the small angle grain boundaries leads to a lognormal distribution close to those seen in the experiments and the molecular scale PFC simulations. Our work indicates, furthermore, that the LGSD is critically sensitive to the details of the evaluation process, and raises the possibility that the differences among the LGSD results from different sources may originate from differences in the detection of small angle grain boundaries.

Topics: Orientation field models, Polycrystalline solidification

Orientation-field models for polycrystalline solidification: grain coarsening and complex growth forms

Bálint Korbuly1, Tamás Pusztai1, Gyula Tóth2,1, Hervé Henry3, Mathis Plapp3, László Gránásy1,4

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2Institute of Physics and Technology, University of Bergen, Allégaten 55, N-5007 Bergen, Norway
3Laboratoire Physique de la Matière Condensée, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
4BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

We compare two versions of the phase-field theory for polycrystalline solidification, both relying on the concept of orientation fields: one by Kobayashi et al. [Physica D 140 (2000) 141] and the other by Henry et al. [Phys. Rev. B 86 (2012) 054117]. Setting the model parameters so that the grain boundary energies and the time scale of grain growth are comparable in the two models, we first study the grain coarsening process including the limiting grain size distribution, and compare the results to those from experiments on thin films, to the models of Hillert, and Mullins, and to predictions by multiphase-field theories. Next, following earlier work by Gránásy et al. [Phys. Rev. Lett. 88 (2002) 206105; Phys. Rev. E 72 (2005) 011605], we extend the orientation field to the liquid state, where the orientation field is made to fluctuate in time and space, and employ the model for describing of multi-dendritic solidification, and polycrystalline growth, including the formation of “dizzy” dendrites disordered via the interaction with foreign particles.

Topics: Orientation field models, Polycrystalline solidification