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1. INTRODUCTION 
 

Crystalline materials play an essential role in our everyday life. Most of them are polycrystalline, i.e., 
composed of a large number of crystallites, whose size, shape and composition distributions deter-
mine their properties and failure characteristics [1]. The size scale of the constituent crystal grains 
varies between a few nanometers (nanocrystalline alloys) and centimeters in different classes of mate-
rials. Despite intensive research, many aspects of the formation of polycrystalline matter are poorly 
understood. The main source of difficulties is the process of nucleation – the least understood early 
stage of crystallization – during which crystallites capable for further growth form via thermal fluc-
tuations. While nucleation takes place on the nanometer scale, its influence extends to other size 
scales. Controlled nucleation [2] might be a tool for tailoring the microstructure of matter for specific 
applications. The complexity of polycrystalline freezing is especially obvious in the case of thin (few 
times 10 nm) polymer layers, which show an enormous richness of crystallization morphologies. 
These quasi two-dimensional structures give important clues to the mechanisms that govern the for-
mation of polycrystalline patterns. While polycrystalline pattern formation plays an important role in 
classical materials science and nanotechnology, it has biological relevance as well (e.g., the appear-
ance of semi-crystalline spherulites of amyloid fibrils is associated with the Alzheimer and 
Creutzfeldt-Jakob diseases, type II. diabetes, and a range of systemic and neurotic disorders [3]).  

The polycrystalline morphologies observed in nature, laboratory and technology might be 
somewhat arbitrarily divided into two categories: 
 
(a)  Foam-like structures that form by the impingement of independently nucleated single crystals. 

These structures are characteristic to equiaxed growth in cast materials.  
 
(b)  Polycrystalline growth forms, which form by the nucleation of new grains at the solidification 

front.  
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Figure 1. Polycrystalline microstructures. (a) Foam-like morphology formed by competing nucleation and growth [4]. (b) 
Polycrystalline dendritic structure formed by competing nucleation and growth in the oxide glass (ZnO)61.4⋅(B2O3)38.6⋅ 
(ZnO2)28 [5]. (c) ‘Dizzy’ dendrite formed in clay filled polymethyl methacrylate-polyethylene oxide thin film (for experi-
mental conditions see [6]). (d) Spherulite formed in pure Se (reproduced from [7] with permission of Elsevier). (e) Crystal 
sheaves in pyromellitic dianhydrite-oxydianilin poly(imid) layer (reproduced from [8] with permission of the American 
Chemical Society). (f) Arboresque growth form in polyglycine (reproduced from [9] with permission of the American Insti-
tute of Physics). (g) Polyethylene spherulite crystallized in the presence of n-paraffin [10].  (h) ‘Quadrite’ formed by nearly 
rectangular branching in isotactic polypropylene [11]. (i) Fractal-like polycrystalline aggregate of electrodeposited Cu (re-
produced from [12] with the permission of Nature Publishing Group).  
 
Typical polycrystalline microstructures are displayed in Fig. 1. The foam-like structure formed by the 
impingement of individual single crystals is shown in Fig. 1(a) [4]. A polycrystalline dendritic mor-
phology formed during chemical-diffusion-controlled anisotropic crystal growth in an oxide glass is 
presented in Fig. 1(b) [5]. Polycrystalline growth forms are shown in Figs. 1(c)-(i) [6 – 12]. Recent 
experiment on polymer films revealed that particulate additives may transform the single crystal den-
drites into disordered polycrystalline dendrites [Fig. 1(c)] [6]. Spherulites  [Fig. 1(d)] provide a classic 
example of polycrystalline growth. This structure has been observed in a wide range of materials in-
cluding pure metals [7], alloys, polymers, minerals, and biological systems. In systems that form fi-
bers during crystallization, the formation of spherulites commonly starts with the appearance of crys-
tal sheaves of diverging ends [Fig. 1(e)] [8], which occasionally develop into less space-filling struc-
tures [Figs. 1(f) and (g)] [9, 10]. Random crystallographic branching of nearly 90 degree, yields 
‘quadrites’ [Fig. 1(h)] observed in certain polymeric systems [11]. Disorderly growth of small crystal-
lites during electrodeposition often result in irregular, fractal-like structures [Fig. 1(i)] [12]. While the 
specific mechanisms that lead to the formation of these complicated structures are usually poorly un-
derstood, it is expected that nucleation, diffusional instabilities, crystal symmetries, and impurities 
play important roles.  

Like the exploration of many other complex problems, research and understanding of polycrys-
talline matter profit excessively from the improving performance of modern computers. In the past 
decade, various models were developed and applied to address complex solidification problems. 
These include the lattice-gas/lattice-Boltzmann/cellular automata models [13 – 20], the level set [21, 
22], and other front tracking techniques [23 - 25], and the phase field theory [26 – 33].  
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Among these approaches, which all have their specific strengths and weaknesses, the phase 
field theory became perhaps the most popular. This originates partly from the fact that it starts from 
thermodynamic/statistical mechanical principles and obtains governing equations for microstructure 
evolution at the end; connecting thus thermodynamic and kinetic properties with microstructure via a 
mathematical formalism. Since many of the developments have been reviewed recently [26 – 33], 
here we briefly outline the phase field concept, and review only the latest developments that demon-
strate the applicability of this approach for polycrystalline solidification, and refer to previous work 
only to the level required to place these developments into context. Our review covers recent ad-
vances made in modeling nucleation and polycrystalline solidification in various systems including 
morphology evolution in quasi-two-dimensional layers, the formation of spherulites, transformation 
kinetics, interaction of particulate additives with crystallization, and the evolution of nucleation pat-
terns on surfaces.  

We start with a brief introduction of the phase field method (Sec. 2.1). Early models of multi-
particle solidification are reviewed in the subsequent paragraph (Sec. 2.2). Recent approaches, which 
rely on the use of an orientation field to distinguish crystallites with different crystallographic orienta-
tions are described in Sec. 2.3. The theory is then used to calculate the height of the nucleation barrier 
and the nucleation rate (Sec. 2.4). We present a quantitative test of theory, performed for the well-
known hard-sphere system, where all the parameters the phase field theory needs can be fixed with a 
high accuracy via results from atomistic simulations. Next (Sec. 2.5), we deal with polycrystalline 
morphologies that appear in ideal and regular solutions, and review the kinetics of polycrystalline 
freezing in such systems. The formation of polycrystalline growth morphologies (spherulites, disor-
dered dendrites, fractal-like aggregates, etc.) characteristic to far-from-equilibrium freezing is ex-
plored in Sec. 2.6. Here, we identify the essential factors that govern polycrystalline solidification. 
Patterns from heterogeneous nucleation on walls and foreign particles, and crystallization in confined 
space (in porous matter or in channels) are addressed in Sec. 2.7. Finally (Sec. 3), we call attention to 
a few promising approaches that may set the future trends in this branch of computational materials 
science. 
 
2. PHASE FIELD THEORY OF NUCLEATION 
 

In this section, we review models developed for describing single crystal patterns, attempts to extend 
them to polycrystalline freezing, and their applications to complex polycrystalline morphologies ob-
served in the laboratory and nature. 

  
2.1 Phase Field Theory of Crystal Growth 
 

2.1.1. The Phase Field Method   
 

The phase field theory [26 – 33] is a descendant of the van der Waals/Cahn-Hilliard/Landau type clas-
sical field theoretic approaches [34 – 38]. It originates from a single-order parameter gradient theory 
of Langer from 1978 [39]. Similar models were independently developed by Collins and Levine [40] 
and Caginalp [41]. In the phase field theory, the local state of matter is characterized by a non-
conserved structural order parameter φ(r,t), called phase field, which monitors the transition between 
the solid and liquid states. It can be viewed as a structural order parameter that measures local crystal-
linity. It is also interpreted as the volume fraction of the crystalline phase. In the presence of n crystal-
line phases, and one disordered phase a minimum of n phase fields are needed {φi(r,t)}. In some mod-
els, such as the multi-phase field theory by Steinbach et al. [42], a separate phase field is introduced 
for every crystal grain. This may lead to thousands of phase fields when addressing multi-grain prob-
lems. While these multi-phase field theories are very powerful methods for describing complex mor-
phologies, the inclusion of thermal fluctuations and hence a physical modeling of nucleation is not 
straightforward. 

In the course of developing the model, one “expands“ the free energy density (or entropy den-
sity) of the inhomogeneous system (liquid + solid phase(s)) in terms of the structural order parame-
ter(s) {φi}, the chemical composition field(s) {ci}, the orientation field, etc., and their spatial deriva-
tives, retaining only those spatial derivatives that are allowed by symmetry considerations. The free 
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energy of the system is a local functional of the field variables, and can usually be regarded as a spe-
cific case of the general functional below:   

 
 ( ) ( ) ( ) { } { }[ ]{ }∫ ∑∑∑ +∇∇+∇∇+∇∇= ...,,,...,,, TcfcccdF iiji jiijji jiijji jiij φφγβφφαr . (1) 

 
(In more complex formulations higher order differential operators are also used.) The gradient terms 
that penalize the spatial change of the fields give rise to the interfacial energies, and lead to diffuse 
interfaces as opposed with the mathematically sharp interfaces of the classical models. The coeffi-
cients αij, βij and γij may depend on temperature, orientation, and the field variables. The bulk free 
energy density f({φi},{ci},T,...) has two or more minima corresponding to the bulk liquid and crystal-
line phases. It is worth mentioning that the free energy functional of solid-liquid systems can be de-
rived on physical grounds using the density functional approach [43, 44], and after appropriate simpli-
fications it can be cast into the form of gradient theory. These molecular theories are, however, usu-
ally too complicated to address complex solidification morphologies. Accordingly, most approaches 
rely on phenomenological free energy (or entropy) functionals whose form owes much to the Landau 
model of phase transitions [37, 38]. The phase field approaches usually differ in the field variables 
considered, and the actual form of coupling between the fields. Once the free energy functional is 
defined, the formalism that describes dynamics under non-equilibrium conditions follows almost 
automatically, though further approximations are usually made.  

Starting from the principle of positive entropy production (or decreasing free energy), partial 
differential equations are derived for the evolution of the phase field and the other field variables [26 
– 33, 39 – 53]. The governing equations differ for non-conserved fields (whose spatial integral varies 
with time during the transition, e.g., phase field) and conserved fields (whose spatial integral is con-
stant, e.g., chemical composition):  
 

Non-conserved fields:  i
i
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ζ
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The appropriate field mobilities Mi set the typical time scale for the evolution of respective fields. 
Here the simplifying assumption has been made that there are no mobility cross couplings between 
the applied fields. To mimic the thermal fluctuations, Gaussian white noise terms ζi (random current 
applies for conserved quantities) of amplitudes determined by the fluctuation-dissipation theorem are 
added to the governing equations [38, 49, 54 – 56]. The time evolution of the non-conserved fields is 
coupled to those of the conserved fields (i.e., the phase field model can be regarded as a generalized 
Hohenberg-Halperin Model C-type classical field theory [37]). These governing equations are highly 
non-linear, and capture such phenomena as diffusional instabilities, enabling the approach to describe 
complex solidification patterns including thermal dendrites [46 – 48, 53, 57, 58] and solutal (chemical 
diffusion controlled) dendrites [50, 51, 59 – 62] (Fig. 2), eutectic [49, 63 – 67], monotectic [68] and 
peritectic solidification [69 – 71], banded structures [72], and many others. (Remarkably, various 
formulations of the phase field theory for thermal dendrites lead to comparable dynamics [73].)  

While the phase field models provided qualitative understanding to such phenomena, as the 
evolution of morphological instabilities, solute trapping, etc., quantitative prediction of microstruc-
ture, which has a vast practical importance in optimizing and designing materials for specific applica-
tions, remains a major challenge. The main difficulty quantitative phase field modeling has to face is 
that sub-nanometer spatial resolution is needed in the interfacial region, which extends to a couple of 
nanometers according to experiment [74, 75] and computer simulations [76 – 77]. Indeed, the phase 
field approaches recover the diffuse interfaces by introducing square-gradient terms in the free energy 
penalizing sharp changes of the fields. However, the interface thickness is usually orders of magni-
tude smaller than the objects of interest, thus numerical solution of the equations, at the resolution 
required to describe the nanometer thick diffuse interfaces properly, is, as yet, impossible (in two and 
higher dimensions)  even  with  the  most  powerful computers.  Accordingly, accurate simulations are 
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Figure 2. Single crystal dendrites in polymethyl methacrylate-polyethylene oxide film (reproduced from [195],  2003, with 
the permission of the Nature Publishing Group) and in a phase field simulation performed on a 2000 × 2000 rectangular grid 
(26.3 µm × 26.3 µm) at 1574 K and supersaturation S = (cl − c∞)/(cl − cs) = 0.80 using the thermodynamic and interfacial 
properties of Ni-Cu, and a 15% anisotropy for the interfacial free energy. Here c∞, cl, and cs are the initial composition of the 
liquid, and the liquidus and solidus compositions. (For details see [195].) The simulation has been made using Model A (see 
Appendix). 

 
limited to small volumes and short times. In the case of larger systems, we might satisfy ourselves 
with qualitative modeling that relies on unphysically broad interface, i.e., the interface thickness is 
regarded as model parameter. This, however, may influence the growth rate, the composition of the 
solid (solute trapping), and other features. To overcome this difficulty, methods have been worked out 
to ensure the proper interface dynamics by adjusting the model parameters and introducing interface 
currents (i.e., new term in the phase field equations) to compensate for the unphysical effects of a too 
thick interface [57, 79 – 81]. These methods make a quantitative phase field modeling of dendritic 
solidification feasible for thermal dendrites and dendrites in dilute solutions [57, 58, 82]. While quan-
titative modeling of such dendrites with model parameters deduced from atomistic simulations is one 
of the most spectacular successes of the theory, a generally applicable approach has yet to be devel-
oped.  

Systems, in which the interfacial free energy and/or kinetic coefficient have strong anisotropies, 
and faceted morphologies expected to occur represent another important challenge to quantitative 
phase field modeling [83 – 88]. A further difficulty associated with quantitative phase field calcula-
tions is that the detailed information on the system needed for such computations, such as the magni-
tude and anisotropy of the phase field mobility and the interfacial free energy, are generally inaccessi-
ble. Linking the phase field theory with atomistic simulations, and the evaluation of the parameters of 
the phase field theory (mobility, anisotropies, interfacial free energy) is a possible resolution of this 
problem [32, 89 – 92]. 

We emphasize that although the phase field theory is a phenomenological model, similar mod-
els can be derived on physical grounds using the density functional theory. Considering the crystal as 
a highly inhomogeneous liquid, whose number density ρ(r) peaks at the lattice sites, the Fourier am-
plitudes of the number density distribution ρ(r) can be regarded as structural order parameters repre-
senting crystalline atomic order [43, 44]. The number of these structural order parameters can be re-
duced if the density peaks at the atomic sites are assumed to have a Gaussian form: Under such condi-
tions, all Fourier amplitudes of the number density can be expressed uniquely in terms of the ampli-
tude of a dominant density wave, therefore, a single structural order parameter is sufficient for the 
description [93, 94]. Thus, the phase field can be viewed as the amplitude of the dominant Fourier 
component of the ρ(r) representing the crystal. Shih et al. [95] developed another method to obtain a 
free energy functional consistent with crystal symmetries on the basis of a Landau expansion, an ap-
proach that has been applied to crystal nucleation and growth by Iwamatsu and Horii [96, 97]. This 
route offers physical interpretation for the model parameters, and derivation of the functions intro-
duced intuitively into the phase field theory. Formulation of a single order parameter theory for crys-
tal nucleation in systems with bcc and fcc structure has recently been developed along this line [98].  

Note that the models reviewed above – with the exception of the multi phase field approach –
are unable to address anisotropic growth of crystal grains with different crystallographic orientation. 
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Due to the practical importance of polycrystalline materials, extensive efforts have been made to ex-
tend the phase field approach to this case.    
 
2.1.2. Technical Issues 

 

The solution of the phase field equations usually represents an extremely demanding computational 
task. Many of the real metallurgical problems are inaccessible for quantitative phase field simulations 
simply due to the shear extent of the numerical work required. Therefore, efficiency of the numerical 
algorithms applied is an important issue. While the improving performance of computers will cer-
tainly ease the situation in time, there are several methods that can offer immediate help to overcome 
these limitations:  

Parallel computing: The simulation is cut into parts, which individual parts are run on dif-
ferent computers, that communicate the relevant results to each other time to time. Such approach has 
been applied recently to a variety of phase field problems [60,99 – 103] allowing simulations on grids 
as large as 104 ×104 and the handling of hundreds of dendritic particles. Details of parallel computing, 
applied to phase field simulations in 2D and 3D, are presented by George and Warren [60].  

Adaptive mesh: The number of mesh points used in the simulations can be drastically re-
duced by the adaptive mesh techniques that use high resolution only in the vicinity of interfaces. De-
scription of such procedures can be found in several recent works [102, 104 – 110] . 

Random-walk algorithms: Problems, where long-range diffusion fields play a role, can be 
efficiently handled using multiscale random-walk algorithms [111, 112]. 

Spectral methods: Fourier methods combined with operator splitting, might lead to algo-
rithms of far improved performance. For example, in the case of the Cahn-Hilliard type problems, 
spectral methods are known to increase the computational speed/accuracy enormously [113, 114]. 
Popov et al. [115] applied Fourier methods to 2D phase field problems recently. 

Lattice anisotropy: Due to the rectangular lattice usually employed, the patterns that form 
are usually anisotropic even if all physical properties are isotropic. Lattice anisotropy in the simula-
tions is suppressed by different methods. Smaller spatial steps reduce the lattice anisotropy, thus adap-
tive grid methods are advantageous. The lattice anisotropy can be reduced by the introduction of ki-
netic and surface anisotropies that balance the anisotropy from the lattice [57], via the use of hexago-
nal, random or locally rotated lattices [116, 117], and by isotropic numerical schemes for the differen-
tial operators [118, 119].   

While some of these methods have already been applied for polycrystalline solidification prob-
lems, others might be employed in the nearest future.  
   
2.2. Early Models of Polycrystalline Freezing 

 

Polycrystalline morphologies of various complexity are observed, which range between the relatively 
simple foam-like structures – formed by nucleation, growth, and impingement of roughly spherical 
crystallites – and the rather complicated, semi-crystalline growth patterns shown in Fig. 1. Their mod-
eling requires approaches of comparably different complexity, as we review below.  
 
2.2.1. Formal Theory of Polycrystalline Solidification  

 

Foam-like grain boundary structures appear when individually nucleating crystallites impinge upon 
each other as they grow. The time evolution of the crystalline fraction in such “nucleation – growth” 
problems is of primary interest for diverse branches of science including materials science, chemistry, 
atmospheric sciences, geophysics and astronomy, and is usually described in the framework of the 
Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory (for review see [120]). The central notion of this 
approach is the ‘overlapping’ transformed fraction, defined as 
 

 ( ) ( ) ( )∫ ∫








=
t t

ddvJtY
0

3

3
4 τϑϑτπ

τ
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where J and v are the nucleation and growth rates, while the integration variables ϑ and τ have dimen-
sions of time. During the early stages of the process when the crystallites are far from each other and 
grow independently, Y(t) coincides with the true crystalline fraction X. However, soon these crystal-
line ‘particles’ (as predicted by (2)) overlap, multiply covered regions appear, and (2) overestimates 
the true crystalline fraction. Here the volume of the critical fluctuations is neglected, as apart from the 
very early stages of the transition, their contribution to the transformed fraction is small relative to the 
contribution by the supercritical particles. The true crystalline fraction X can be related to Y via a sim-
ple mean field expression dX = (1 − X) dY, which counts only that fraction of dY that falls on the un-
transformed region. Upon integration, one obtains X = 1 − exp{−Y}, an expression that is exact if (i) 
the transformation takes place in an infinite medium; (ii) the new particles nucleate the untransformed 
region at a rate, which is independent of the coordinates; and (iii) the freely growing particles have the 
same convex shape and orientation, while the growth rate depends on time through a multiplicative 
factor common for all directions. For example, assuming constant nucleation and growth rates and an 
infinite system, the time evolution of the crystalline fraction follows the KJMA scaling X = 1 − 
exp{−(t/t0 )p}, where t0  is a time constant related to the nucleation and growth rates, p = 1 + d is the 
Avrami-Kolmogorov exponent, and d is the number of dimensions. If the number of nuclei is fixed 
(which occurs after early-stage site-saturation, or when quenched-in or athermal nuclei dominate), one 
obtains p = d. (Derivation of the KJMA relationship using the time cone method by Cahn is given in 
[121, 122].) A variety of processes are known to deviate from the KJMA scaling (for example, the 
nucleation and growth of anisotropic particles [123-126]). A practically important question is whether 
the KJMA scaling might work in the presence of chemical diffusion. Condition (iii) is evidently vio-
lated here, as diffusion-controlled growth yields a growth rate that diminishes with increasing particle 
size. Although no exact treatment of the problem is available, it has been suggested [120] that under 
such conditions, p ≈ 1 + d /2 applies for constant nucleation rate and p ≈ d/2 for fixed number of par-
ticles. Recent experimental studies [127] in agreement with approximate descriptions [127,128] find, 
however, deviation from this behavior for diffusion mediated ‘soft impingement’ of crystal particles. 
Being able to handle the interacting diffusion fields of growing particles, the phase field theory is an 
ideal tool to address such problems. 
 
2.2.2. Phase Field Models with Isotropic Growth 

 

When solidification takes place with nucleation and isotropic growth of the particles, one does not 
need to introduce a local crystallographic orientation to address the kinetics of freezing. Jou and Lusk 
[129] applied a scalar order parameter theory to study the formation of foam-like multigrain structures 
in one-component, isotropic systems. They observed deviations from a constant growth rate only at 
short times, and the transformed fraction was found to follow closely the KJMA scaling, except in the 
case of very large nucleation rates. Elder et al. [49] developed a two-field theory (phase and concen-
tration fields) with Langevin-noise to induce crystal nucleation for describing multigrain solidification 
in isotropic eutectic system. The p = 3 they found for the Avrami-Kolmogorov exponent is consistent 
with the absence of long-range diffusion. (Short-range diffusion, parallel with the growth front, is the 
dominant diffusion mode here.) Gránásy et al. [130] investigated diffusion-controlled solidification in 
a binary system of ideal solution thermodynamics (Ni-Cu), initiated by randomly positioned super-
critical particles of fixed number. They found that the Avrami-Kolmogorov exponent diminishes as 
the crystallization advances, a behavior that follows the trend seen in experiment [127] and predicted 
by approximate theory [127,128]. 

 
2.2.3. Phase Field Models Addressing Anisotropic Growth 

 

To describe the impingement of a large number of crystallites that grow anisotropically [shown in Fig. 
1(b)], one needs to incorporate the crystallographic orientation into the theory that determines the 
preferred growth directions.  

The first phase field model that allows for different crystallographic orientations in a solidify-
ing system (Morin et al. [131]), relies on a free energy density that has n wells, corresponding to n 
crystallographic orientations, breaking thus the rotational symmetry of the free energy. In this work, 
homogeneous nucleation has been mimicked by randomly introducing seeds  (in space and time) that 
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exceed the critical size. Simulations have been performed to study polymorphous crystallization, 
during which the composition of the liquid remains close to that of the crystal, therefore, chemical 
diffusion plays a minor role, and the KJMA form fits the simulations reasonably well. A weakness of 
the model is that the rotational invariance of the free energy density had to be sacrificed to introduce a 
finite number of crystallographic orientations, which form grains with a diffuse interface (grain 
boundary) between them. 

A significantly different approach for addressing the formation of particles with random crys-
tallographic orientations is represented by the multi-phase field models [42, 132 – 135], which offer 
flexibility at the expense of enhanced complexity. These models have been used to study polycrystal-
line dendritic and eutectic/peritectic solidification during directional and equiaxed conditions [66, 
133, 134].  They have also been successfully applied for describing the time evolution of multigrain 
structures. However, the large number of phase fields applied in these approaches leads to difficulties, 
when nucleation is to be initiated by Langevin noise. While noise-induced nucleation can certainly be 
substituted by inserting the nuclei by ‘hand’ into the simulations, this procedure becomes excessively 
non-trivial when structures that require the nucleation of different crystallographic orientations at the 
growth front [Figs. 1(c)−(i)] are to be addressed.  
 
2.3. Phase Field Models with Orientation Field 

 

Since the first model of polycrystalline solidification that incorporates crystallographic orientations 
and a rotationally invariant free energy (Kobayashi et al. [136, 137]) is the basis of later develop-
ments, we discuss it here in detail.  

In two dimensions, crystallographic orientation can be specified by a single angular variable 
that sets the tilt of the crystal planes in the laboratory frame. Accordingly, Kobayashi et al. [136, 137] 
introduced a non-conserved scalar orientation field θ(r,t) that sets the local crystal orientation in the 
crystallized regions relative to which the angular dependencies of the interfacial free energy and the 
kinetic coefficient are measured. A heuristic approach is then used to derive the orientational free 
energy Fori. Following the general philosophy of the phase field method, it is assumed that the orienta-
tional free energy is a local functional (i.e., it may depend on the field variables and their derivatives). 
Another requirement is the invariance of the free energy with respect to rotations of the laboratory 
frame (i.e., explicit dependence on θ and its powers is excluded). Seeking the orientational free en-
ergy in the form of Fori = ∫dr H∇θn, where the constant H and the exponent n have yet to be speci-
fied, the free energy of a planar interface between two semi-infinite crystal grains of misorientation 
∆θ can be expressed as 

 

 1
0

)(
−

∆
∝∇= ∫ n

nnL

ori L
HdzF θθ  . (3) 

 
Here L is the thickness of the interface region and the integration is taken with respect to the spatial 
coordinate z perpendicular to the interface. For n > 1, the orientational free energy Fori decreases with 
increasing interface thickness. Thus the system lowers its free energy by broadening the interface 
region indefinitely. [In fact, n = 2 is also a reasonable model for a grain boundary, with the caveat that 
real grain boundaries are properly described as a wall of dislocations. Note that dislocations can be 
regarded as singularities in the ∇θ field. Since we are interested here in modeling of coherent lines of 
dislocations (i.e., grain boundaries), we disregard single dislocations.] Apparently, the most plausible 
choice that leads to a stable interface with non-zero free energy is n = 1. In this case, the free energy 
contribution associated with the interface is proportional to ∆θ [see Fig. 3(a)], provided that θ(z) is 
monotonic [if θ(z) is non-monotonic, the energy is not a minimum]. This minimization, however, 
leaves the interface profile θ(z) undefined. This arbitrariness can be remedied assuming that the coef-
ficient H varies with z so that it has a minimum at the interface [see Fig. 3(b)]. Minimization of free 
energy will then lead to a stepwise variation of θ(z), a behavior that approximates reasonably the ex-
perimental reality of stable, planar grain boundaries. Such a minimum has already been realized mak-
ing the coefficient H dependent on the phase field, or on an extra “solid order parameter” that deter-
mines whether the solid material is crystalline or disordered [136, 137]. Due to the non-analytic nature  
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Figure 3. (a) ∫dz ∇θ = ∆θ is the same for the three θ(z) functions (dotted, dashed, and solid lines), since they vary 
monotonically between the same end points. (b) If the coefficient of ∇θ has a minimum in the interface  after free 
energy minimization  the orientation field changes stepwise between the two orientations. 
 
of the orientational free energy, the equation of motion of the orientation field defines a singular dif-
fusivity problem that requires special care when handled numerically [138, 139]. This approach has 
been applied for describing the impingement of fixed number of anisotropically growing particles of 
diverse morphologies, including dendritic solidification in single component [136, 137] and binary 
liquids [102, 140]. Diverse grain boundary related problems, such as grain boundary wetting and grain 
coarsening in polycrystalline matter via grain boundary migration and rotation, have also been ad-
dressed [141 - 144].  

Modeling of nucleation of crystallites with different crystallographic orientations (either in the 
liquid or at the growth front) requires a further important step made by Gránásy et al. [99, 100], who 
extended the orientation field θ into the liquid phase, where θ has been made to fluctuate in time and 
space. Assigning local crystallographic orientation to liquid regions, even a fluctuating one, may seem 
artificial at first sight. However, due to geometrical and/or chemical constraints, a short-range order 
exists even in simple liquids, which is often similar to the one in the solid. Rotating the crystalline 
first-neighbor shell centered to a liquid molecule so that it aligns optimally with the local liquid struc-
ture, one may assign a local orientation to every molecule in the liquid. The orientation obtained in 
this manner fluctuates in time and space. The correlation of the atomic positions/angles shows how 
good this fit is. (In the model by Gránásy et al. [99, 100], the fluctuating orientation field and the 
phase field play these roles.) Approaching the solid from the liquid, the orientation gradually becomes 
more definite (the amplitude of the orientational fluctuations decreases) and eventually matches to 
that of the solid, while the correlation between the local liquid structure and the crystal structure im-
proves. In this model, called Model A henceforth (for details see the Appendix), the orientation field 
and the phase field are strongly coupled to recover this behavior. We emphasize that the models 
termed Models A to C in this paper differ from Models A to C of the usual Hohenberg-Halperin [37] 
classification. 

In Model A, the orientational free energy density has the form fori = HT [1 − p(φ)]∇θ, where 
p(φ) is the interpolation function (see Appendix) that varies between 0 and 1, while φ changes from φ 
= 0 in the bulk solid phase to φ = 1 in the bulk liquid (choices of historic origin [50, 51]), and the free 
energy of the small angle grain boundaries scales with parameter H  [144]. It is worth noting that due 
to the [1 − p(φ)] multiplier, the driving force of orientational ordering disappears in the bulk liquid. 
This ensures that a double counting of the orientational contribution to the free energy of the liquid is 
avoided, as this contribution has per definitionem been incorporated into the free energy density of the 
bulk liquid phase fL(c, T). As we are interested in solidification, which takes place on a considerably 
shorter time scale than grain boundary relaxation, the orientational mobility is assumed to vary pro-
portionally to p(φ) across the interface, i.e., we set zero orientational mobility in the solid and the 
maximum value in the liquid. (This assumption can be relaxed, and grain boundary dynamics in the 
solid state can also be studied within the frame of the present model.) As a consequence of this as-
sumption, orientational ordering takes place exclusively at the crystal-liquid interface, concurrently 
with structural ordering. An important consequence is that the orientational noise present in the inter-
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face region may contribute to the free energy of the solid-liquid interface. This can be avoided by an 
appropriate choice of the model parameters that leads to the development of an ordered liquid layer 
ahead of the solidification front (as observed in molecular dynamics simulations, see e.g. [76 – 78]). 
Under such conditions the orientational contribution to the interfacial free energy is insignificant, and 
the usual simple relationships between interfacial properties (thickness and free energy) and the model 
parameters remain valid. 

With the introduction of the orientation field, additional time and length scales appear in the 
model. Specifically, the relaxation time of orientational perturbations is inversely proportional with 
the orientational mobility Mθ, which in turn, is proportional to the rotational diffusion coefficient Mθ 
∝ Drot of molecules that scales with the inverse viscosity (according to the Stokes-Einstein-Debye 
relationship) down to the glass transition temperature. Apparently, this new time scale plays a central 
role in the formation of polycrystalline structures. Recently, it has become appreciated that under-
cooled liquids of sufficiently high viscosity (≈ 30−50 Pa⋅s) exhibit spontaneous and long-lived het-
erogeneities, associated with the formation of regions within the fluid having much higher and lower 
mobility relative to a simple fluid in which particles exhibit Brownian motion [145, 146]. These dy-
namic heterogeneities persist on timescales of the order of the stress relaxation time, which can be 
minutes near the glass transition and astronomical times at lower temperatures. The presence of such 
transient heterogeneities has been associated with dramatic changes in the transport properties of su-
percooled liquids [147 - 151]. Specifically, both the translational diffusion coefficient Dtr and the rota-
tional diffusion coefficient Drot (quantities associated with the rate of molecular translation and rota-
tion in the liquid) scale with the inverse of liquid shear viscosity at high T and low undercooling, but 
Drot slows down significantly relative to Dtr at lower T. This phenomenon in undercooled liquids is 
termed “decoupling” [147 - 151]. As a result, at low temperatures, where rotational relaxation is slow 
relative to the translational one that governs the growth rate, orientational defects (e.g. new grains) 
can be frozen into the solid. Model A naturally incorporates this possibility (the orientational mobility 
needs to be reduced relative to the phase field mobility). As it will be demonstrated in Sec. 2.5, Model 
C (a close relative of Model A) is able to recover many of the polycrystalline morphologies via the 
combination of this mechanism with polycrystalline branching of well-defined branching angle. Be-
fore reviewing these developments, we explore the applicability of the phase field theory for describ-
ing the formation of nanometer size heterophase fluctuations that initiate crystalline freezing.  
 
2.4 Phase Field Theory of Crystal Nucleation 

 

Crystallization of homogeneous non-equilibrium liquids is initiated by nucleation, during which crys-
tallike heterophase fluctuations appear (Fig. 4) [152 - 155], whose formation is governed by the free 
energy gain when transferring molecules from liquid to the crystal and the extra free energy γ needed 
to create the crystal-liquid interface. Those heterophase fluctuations that are larger than a critical size, 
determined by the interplay of the volumetric and interfacial contributions to the cluster free energy, 
reach macroscopic dimensions with a high probability, while the smaller ones dissolve with a high 
probability.  Heterophase fluctuations of the critical size are termed nuclei and the process in which 
they form via internal fluctuations of the liquid phase is homogeneous nucleation (as opposed with the 
heterogeneous nucleation, where particles, foreign surfaces, or impurities help to produce the hetero-
phase fluctuations that drive the system towards solidification). Even in simple liquids (such as Len-
nard-Jones), several local arrangements (bcc, fcc, hcp, icosahedral) compete [156, 157], of which 
often a metastable phase nucleates.  

Before reviewing theory, it is appropriate to mention that recent experiments on colloidal sus-
pensions and on biological systems shed much light on the microscopic aspects of crystal nucleation, 
and revealed phenomena that represent new challenges to theory. With appropriate surface treatments, 
the colloidal solutions mimic closely the hard-sphere liquid [158 - 162]. Since the size of the individ-
ual particles is in the micrometer range, crystallization can be monitored via light scattering. With 
modern experimental techniques (such as laser scanning confocal microscopy), real-time imaging of 
nucleation processes became possible [153]. This allows for a better characterization of the critical 
fluctuations, which have  a  quite irregular,  fluctuating  shape. The nucleation experiments on apofer- 
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                                         (a)                                              (b) 

 

 
                                      (c)                                              (d) 
 

  
 

Figure 4. Crystalline heterophase fluctuations in non-equilibrium liquids. From left to right: (a) in Lennard-Jones liquid 
(molecular dynamics simulation, reprinted from [152],  1996, with the permission of the American Institute of Physics); 
(b) in colloidal suspension (laser scanning confocal microscopy, reprinted from [153],  2001, with the permission of the 
AAAS); (c) in Lennard-Jones glass (molecular dynamics simulation, reprinted from [154],  1991, with the permission of 
Elsevier); (d) in hard-sphere liquid (molecular dynamics simulation, reprinted from [155],  2001, with the permission of 
Nature Publishing Group). 
 
ritin have shown that the critical fluctuations form via merging chainlike aggregates [163]. This unex-
pected behavior is thought to originate from a weak middle-range repulsion that precedes shorter-
range attraction and core-repulsion between the molecules. This finding implies that nucleation is 
sensitive to details of the interaction potential, and it is essential to work out true molecular theories.   

The description of the nanometer-size near-critical fluctuations is problematic even in one-
component systems. The main difficulty is that critical fluctuations forming on reasonable experimen-
tal time scales contain typically a few times ten to several hundred molecules [152 – 173]. This to-
gether with the fact that the crystal-liquid interface extends to several molecular layers [32, 76 - 78] 
indicates that the critical fluctuations are essentially comprised of interface. Therefore, the droplet 
model of classical nucleation theory, which employs a sharp interface separating a liquid from a crys-
tal with bulk properties, is certainly inappropriate for such fluctuations as demonstrated by recent 
atomistic simulations [155, 164].  

Field theoretic models that predict a diffuse interface, offer a natural way to handle such diffi-
culties [43, 44], and proved successful in addressing nucleation problems [167 – 173], including con-
densation [170, 171], and nucleation of metastable phases [172, 173]. Here, we review recent applica-
tions of the phase field theory for describing homogeneous crystal nucleation, and address two possi-
bilities:  

(a) The nucleation process can be simulated within the framework of the phase field theory. 
The proper statistical mechanical treatment of the nucleation process requires the introduction of un-
correlated Langevin-noise terms into the governing equations with amplitudes that are determined by 
the fluctuation-dissipation theorem [49, 54, 55, 65]. Such an approach has been used for describing 
homogeneous nucleation in a single-component [174] and binary systems [99, 100] and during eutec-
tic solidification in a binary model [49, 65]. However, modeling of nucleation via Langevin-noise is 
often prohibitively time consuming. One remedy is simply to increase the amplitude of the noise. 
This, however, raises the possibility that the fluctuations, which initiate solidification, will most likely 
significantly differ from the real critical fluctuations. To avoid practical difficulties associated with 
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modeling noise-induced nucleation, crystallization in simulations is often initiated by randomly plac-
ing supercritical particles into the simulation window [70, 71, 175, 176]. An alternative method has 
been proposed by Gránásy et al. [99, 100], who first calculate the properties of the critical fluctuations 
(see below) and then place such critical fluctuations randomly into the simulation window, while also 
adding Langevin-noise that decides whether these nuclei grow or dissolve.      

(b) The phase field theory can also be used for calculating the properties of the critical fluctua-
tions and the height of the nucleation barrier [99, 100, 177]. Being in unstable equilibrium, the criti-
cal fluctuation (the nucleus) represents an extremum of the free energy functional, subject to conser-
vation constraints when the phase field is coupled to conserved fields. To mathematically impose such 
constraints one adds the volume integral of the conserved field times a Lagrange multiplier to the free 
energy. The field distributions, that extremize the free energy, obey the appropriate Euler-Lagrange 
(EL) equations, which in the case of the phase field theory take the form 

 

 0=
∂∇
∂

∇−
∂
∂

=
φφδφ

δ IIF  , (4) 

 
where δF/δφ stands for the first functional derivative of the free energy with respect to the field φ, 
while I is the total free energy density (that includes all the gradient terms). Here φ stands for all fields 
used in theory. The EL equations are solved under the appropriate boundary conditions: it is assumed 
that unperturbed liquid exists in the far field, while, for symmetry reasons zero field gradients pre-
scribed at the center of the fluctuations. The same solutions can also be obtained as the non-trivial 
time-independent solution of the governing equations for field evolution. Having determined the solu-
tions, the work of formation of the nucleus (height of the nucleation barrier) can be obtained by insert-
ing the solution into the free energy functional.  

As nucleation takes place at relatively large undercoolings, the interface thickness and the size 
of nuclei are comparable, and one can work with the physical interface thickness. Thus, one of the 
major obstacles of quantitative phase field modeling of large solidification objects forming at low 
undercoolings, i.e., the necessity to use unphysically broad interfaces, does not show up here. Fur-
thermore, in the case of a few well-known model systems, all parameters of the phase field theory can 
be fixed, and the properties of the critical fluctuations can be calculated without adjustable parame-
ters. For example, in the one-component limit of the standard binary phase field theory [50, 51], the 
free energy functional contains only two parameters, the coefficient of the square-gradient term for 
phase field and the free energy scale (height of the central hill between the double well in the local 
free energy density).  If the thickness and the free energy of a crystal-liquid interface are known for 
the equilibrium crystal-liquid interface, all model parameters can be fixed and the properties of the 
critical fluctuation, including the height of the nucleation barrier, can be predicted without adjustable 
parameters. Such information is available from atomistic simulations/experiments for a few cases 
(Lennard-Jones system and ice-water system). This procedure leads to a good quantitative agreement 
with the magnitude of the nucleation barriers deduced from atomistic simulations for the Lennard-
Jones system, and from experiments on ice nucleation in undercooled water [99, 100]. A similar ap-
proach for a binary Ni-Cu alloys lead to reasonable values for the temperature and composition de-
pendence of the interface free energy of critical fluctuations, and also yielded reasonable critical un-
dercoolings for electromagnetically levitated droplets [99, 100]. Similar results have been obtained for 
the hard-sphere system using a phase field model that relies on a structural order parameter coupled to 
the density field [178]. Again, the model parameters have been fixed via the interface thickness and 
interfacial free energy from atomistic simulations, so the calculations were performed without adjust-
able parameters. A similar approach has been used recently to address CO2 hydrate nucleation in 
aqueous CO2 solution under conditions typical to seabed hydrate reservoirs [179, 180]. 

Recent developments in atomistic modeling of small crystalline clusters in the hard-sphere sys-
tem allowed for an extension of the analysis described in [178]. Cacciuto et al. [181] evaluated the 
free energy of clusters in the hard-sphere liquid of equilibrium density as function of size that allowed 
the determination of the size dependence of the solid-liquid interface free energy. The results extrapo-
late to γ R → ∞ = 0.616(3) kT/σ2, the cluster average of the interfacial free energy for infinite size (σ is 
diameter of the hard spheres).  This value agrees  well  with  results from molecular dynamics simula- 
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Figure 5. The height of the nucleation barrier vs. the initial density of the hard-sphere liquid as predicted by the phase field 
theory (PFT [178]), the sharp interface droplet model of the classical nucleation theory (CNT); the self-consistent classical 
theory (SCCT [184]), and the phenomenological diffuse interface theory (DIT [185]). These calculations do not contain 
adjustable parameters. For comparison the height of the nucleation barrier from Monte Carlo simulations (MC [155, 164]) is 
also presented. 
 
tions (e.g., withγ/(kT/σ2) = 0.612 ± 0.02 for the average of the values for the (111), (110), and (100) 
directions by Davidchack and Laird [89]; and withγ /( kT/σ2) = 0.63 ± 0.02 by Mu et al. [182]). This 
allows the fixing of the coefficient of the square-gradient term with a higher accuracy than in previous 
work, since it was uncertain how far the cluster (or orientational) average of the interfacial free energy 
falls from the average for the (111), (110), and (100) directions. A further refinement of the theory is 
that the density dependence of the coefficient of the square-gradient term, ε2 ∝ C’’(k), and of the free 
energy scale, w ∝ 1/S(k), were taken into consideration, where C(k) is the direct correlation function 
of the liquid, related to the structure factor of the liquid as S(k) = 1/[1 − C(k)], and C’’ is its second 
derivative with respect to its argument. The parameter-free predictions of the PFT and the exact 
Monte Carlo results are compared in Fig. 5 [183]. The agreement between theory and MC simulations 
is convincing; considerably better than the (parameter-free) predictions of the classical nucleation 
theory and the self-consistent classical theory of Girshick and Chiu [184], while it is somewhat better 
than the parameter-free prediction by the phenomenological diffuse interface theory of Gránásy [185]. 
The uncertainty of the input data (interfacial free energy, equations of state, etc.) does not influence 
this result perceptibly [183].     

These findings suggest that, using the physical interface thickness, the phase field theory is able 
to predict the height of the nucleation barrier quantitatively. This success [99, 100, 178, 183], together 
with the parameter-free prediction of the dendritic growth rate [32, 58], suggests that a multi-scale 
approach of the phase field theory with model parameters deduced from atomistic simulations is ca-
pable for quantitative predictions for both crystal nucleation and growth.    

Below we describe further advances in the theory of polycrystalline solidification, particularly 
in the directions of restoring the rotational invariance of the free energy and incorporating a natural 
(noise-driven) nucleation of new crystal orientations.  
 
2.5. Crystallization Kinetics 
 

2.5.1. Polycrystalline Solidification in the Ideal Solution Model 
 

Model A has been used to study the kinetics of anisotropic multi-particle solidification in two dimen-
sions in binary ideal solutions (Ni-Cu) [99, 100]. A polycrystalline dendritic morphology closely re-
sembling Fig. 1(b) has been obtained (see Fig. 6). The large number of particles (722) provides rea-
sonable statistics for evaluating the Avrami-Kolmogorov exponent p. Transformation kinetics emerg-
ing from four representative simulations performed on 7000×7000 grids are compared [101]: Two of 
the simulations were performed for the same normalized initial liquid concentration of x = (c∞  
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Figure 6. Snapshots of the concentration (left) and orientation (right) fields for two-dimensional dendritic solidification of a 
binary alloy (Ni-Cu) as predicted by Model A at 1574 K and supersaturation 0.8. By the end of solidification 722 dendritic 
particles formed. The calculation has been performed on a 10,000 × 10,000 grid (131.3 µm × 131.3 µm) with a 10% anisot-
ropy of the interfacial free energy that was assumed to have a four-fold symmetry. (On the left, black and white correspond 
to the solidus and liquidus compositions, respectively, while the intermediate compositions are shown by hues that interpo-
late linearly between these colors. On the right, different hues denote different crystallographic orientations. When the fast 
growth direction is upward, 30, or 60 degrees left, the grains are shaded dark, light, or middle gray, respectively, while the 
intermediate angles are denoted by a continuous transition among these hues. Owing to the four-fold symmetry, orientations 
that differ by 90 degree multiples are equivalent.) 
 
− cs)/(cl − cs) = 0.2, close to the solidus composition (c∞ is the composition of the initial liquid, cs = 
0.399112 and cl = 0.466219 are the solidus and liquidus compositions at T   = 1574 K). The other two 
simulations were performed at higher solute contents (x = 0.5 and 0.8), that lie midway between the 
solidius and liquidus compositions, and close to the liquidus, respectively. Representative 1000×1000 
sections  of  these  simulations  are  shown  in  Fig.  7 [panels  (a) − (d)],  together  with the respective 
   

               (a)                                     (b)                                    (c)                                    (d) 
 

    
 

 
             (e)                                     (f)                                      (g)                                      (h) 
 

Figure 7. Two-dimensional anisotropic multigrain solidification as a function of composition and nucleation rate in the Cu-
Ni system at 1574 K as predicted by Model A. (a)-(d) 1000×1000 segments (13.2 µm × 13.2 µm) of the concentration distri-
bution (white: solidus; black: liquidus); (e)-(h) the respective Avrami-Kolmogorov exponent vs. normalized transformed 
fraction curves are shown. Simulations presented in panels (a) and (b) differ in the magnitude of the nucleation rate. 
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 Avrami-Komogorov exponents evaluated as a function of the normalized crystalline fraction η = 
X/Xmax, [panels (e) − (h)], where Xmax is the maximum crystalline fraction achieved at the given liquid 
composition. Note the morphological transition from the dendritic structure towards the equilibrium 
shape with decreasing supersaturation (defined as S = 1 − x). 

In the simulation shown in Fig. 7(a) the nucleation rate is sufficiently low to enable the forma-
tion of fully developed dendritic structures. It is worth noting in this respect that in the case of den-
dritic solidification, the global average of the composition of the growing solid combined with the 
interdendritic liquid trapped between the dendrite arms must be equal to the initial composition of the 
liquid (as required by mass balance), thus solute pile up does not decelerate the advance of the pe-
rimeter (except as a transient), which is determined essentially by the growth velocity of the dendrite 
tips. Since the dendrite tip is a steady state solution of the diffusion equation, a constant nucleation 
and growth rates apply here, and p = 1 + d = 3 is expected for the Avrami-Kolmogorov exponent in 
two dimensions. The observed value, p ≈ 3, is fully consistent with this expectation. In the other three 
simulations, the particles have more compact shapes, and interact via their diffusion fields, a phe-
nomenon termed ‘soft impingement’. The respective Avrami-Kolmogorov exponents decrease with 
increasing solid fraction. A closer inspection of the process indicates that at large supersaturations 
where there is no substantial compositional difference between the nucleus and the initial liquid [see 
Figs. 7(b) and 7(f)], supercritical growth right after nucleation is governed by the phase field mobility, 
as opposed to chemical diffusion controlled growth at later stages. This transient period represents a 
delay in the onset of diffusion-controlled growth, resulting in a value for p that decreases with time; a 
phenomenon that becomes weaker with decreasing supersaturation. This phenomenon is expected to 
be perceptible in only the case of copious nucleation, where the length of the transient period is com-
parable to the total solidification time. Such behavior has been indeed observed experimentally during 
the formation of nanocrystalline materials made via the devitrification of metallic glass ribbons [127], 
a process characterized by enormous nucleation rates. 

 
2.5.2. Polycrystalline Solidification in the Regular Solution Model 

 

Pusztai and Gránásy introduced regular solution thermodynamics into Model A, which can be then 
used to describe simple eutectic and peritectic systems [186]. It is worth recalling that in many eutec-
tic systems, the two solid phases have a well-defined orientational relationship [187 – 189]. To ad-
dress such a situation, an extra free energy term has been incorporated that prefers a fixed misorienta-
tion at the phase boundaries [186]. Since the model contains a single structural order parameter (phase 
field), it is strictly applicable only to systems, where the two phases have the same crystal structure 
(e.g., Ag-Cu, Ag-Pt).  

 
 

(a)                                                               (b)                                                (c) 
 

  
 
 
 
Figure 8. Solidification in the Ag-Cu system as predicted by the phase field theory: (a) Regular solution phase diagram for 
the Ag-Cu system. Solidification morphologies in the gray point and the black point on the right in panel (a), respectively: 
(b) Primary dendritic solidification. (c) Equiaxed eutectic grains formed by noise-induced nucleation. Composition maps are 
shown. 
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Two-dimensional simulations have been performed for the Ag-Cu system [Fig. 8(a)] at various 
initial liquid compositions (hypo-eutectic, eutectic, and hyper-eutectic), which showed that the model   

 

  
 

  
 

  
 

  
 

  
 

 

Figure 9. Equiaxed solidification in hypo-eutectic (from top to bottom: cCu = 0.2, 0.3), eutectic (cCu = 0.35), and hyper-
eutectic (cCu = 0.4, 0.5) Ag-Cu liquids at 900 K as predicted by the phase field theory. Composition maps are shown in the 
top row, the respective orientation maps are in the bottom row. (In the composition maps, continuous change from black to 
white indicates compositions varying from cCu = 0 to 1, respectively. In the orientation maps, different hues stand for differ-
ent crystallographic orientations in the laboratory frame.) Note the locked (fixed) misorientation of the two phases within the 
eutectic particles. 
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Figure 10. Avrami-Kolmogorov exponent for eutectic solidification as a function of transformed fraction, de-
termined in the point marked by the rightmost black square in Fig. 8(a). 
 

 

successfully accounts for the orientational locking of the solid phases (Fig. 9). the Avrami-Kolmogo-
rov exponent p has also been evaluated. In agreement with experiment [190] and phase field simula-
tions without orientation field [49, 65], the value  p ≈ 3 obtained follows the p = 1 + d rule, where d  is 
the number of dimensions (Fig. 10). 

The dynamic recovery of natural lamellar spacing via initiating eutectic solidification with sig-
nificantly lower and larger spacing than the natural one has also been explored using this model. Our 
simulations imply that the natural lamella spacing is re-established via the nucleation of new lamellae 
(Fig. 11). To investigate morphologies associated with primary dendritic solidification and subsequent 
eutectic solidification, two-stage heat treatments were performed (above and below the eutectic tem-
perature). The results are presented in Fig. 12. The solidification started with epitaxial growth of the 
primary phase, followed by copious-nucleation-driven eutectic solidification. 
              

(a)    

(b)  
 

Figure 11. Dynamic self-adjustment of eutectic lamellar spacing: (a) Initial wavelength is larger than the natural one. (b) 
Initial wavelength is smaller than the natural wavelength. Composition (left) and orientation maps (right) are shown. 
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Figure 12. Solidification morphology after primary dendritic crystallization took place above the eutectic temperature (gray 
square in Fig. 8[a]), and subsequent heat treatment below the eutectic temperature (black square on the right in Fig. 8[a]). 

 
The same model has been used to describe peritectic solidification in a regular solution model 

system with interaction parameters chosen so that the qualitative features of the Ag-Pt phase diagram 
are recovered (Fig. 13). The phase field simulations have been performed inside the metastable liquid 
spinodal (red square inside the region bounded by dashed green line in Fig. 13). Accordingly, solidifi-
cation is preceded by liquid phase separation. As found in molecular dynamics [191] and density 
functional [192] studies for other systems, this process helps crystal nucleation, which takes place in 
the high Ag-content liquid droplets (Fig. 14).  

In order to enable the modeling of the formation of a metastable crystalline phase besides the 
stable one, an extra solid-solid structural order parameter ψ has been introduced (see Model B in Ap-
pendix). Combined epitaxial and equiaxed solidification at the eutectic composition in the Ag-Cu 
system is shown in Fig. 15. Initially solid layers were placed to the left and right sides of the simula-
tion box (low Cu content solid of structure stable at this composition). Note the correlation of the 
solid-solid order parameter, the composition, and the orientation field, and the transition from island 
growth to lamellar growth in the expitaxial regions on the left and right sides of the simulation win-
dow. Work is underway to explore competing nucleation and growth of metastable and stable phases.  

These results indicate that Models A and B reproduce the essential features shown by eutectic / 
peritectic solidification. 
 
 
 

 
 
Figure 13. Phase diagram of model peritectic system (regular solution Ag-Pt). The parameters of the regular solution model 
have been chosen so that the general features of the experimental phase diagram are reproduced. 
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Figure 14. Solidification in a model peritectic system shown in Fig. 13 as predicted by the phase field theory. The transfor-
mation starts with liquid phase separation assisted nucleation of the crystals. Upper row: composition map (black: pure Ag, 
white: pure Pt); central row: phase field, bottom row: orientation field. 
 

 

 

 

 
 
Figure 15. Epitaxial and equiaxed growth during eutectic solidification as predicted by the four-field phase field theory 
(Model B, T = 900 K, cCu = 0.35). From top to bottom: Solid-liquid phase field, solid-solid phase field, composition, and 
orientation fields. Note the correlation of the latter fields, and the fixed orientational relationship between the two solid 
phases. 
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2.6. Polycrystalline Growth Forms 
 

Particulate additives are known to influence the solidification microstructure. Such additives are used 
as grain refiners for many practical systems as they lower the nucleation barrier for the crystalline 
phase and can thus be used to control the number density of crystalline particles that form during the 
solidification process. Recent experiments on clay filled polymer blend films revealed that, besides 
this role, particulate additives may also perturb crystal growth, yielding polycrystalline growth mor-
phologies [6]. Remarkably, polycrystalline growth also occurs in pure liquids in the absence of par-
ticulate additives (e.g., [7, 193, 194]). Both routes to polycrystalline growth have recently been ad-
dressed within the framework of the phase field theory. 
 
2.6.1. Particle-Induced Grain Nucleation at the Perimeter 

 

A spectacular class of structures appears in thin polymer blend films if foreign (clay) particles are 
introduced [6, 195]. This disordered dendritic structure is termed a ‘dizzy’ dendrite [Fig. 1(c)] and 
form by the engulfment of the clay particles into the crystal, inducing the formation of new grains. 
This phenomenon is driven by the impetus to reduce the crystallographic misfit along the perimeter of 
clay particles by creating grain boundaries within the polymer crystal. This process changes the crys-
tal orientation at the dendrite tip, changing thus the tip trajectory (‘tip deflection’). To describe this 
phenomenon, Gránásy et al. [195] incorporated a simple model of foreign crystalline particles into 
Model A: They are represented by orientation pinning centers,  small areas of random, but fixed 
orientation  which are assumed to be of a foreign material, and not the solid φ = 0 phase. This pic-
ture economically describes morphological changes deriving from particle-dendrite interactions. 

The simulations (see Fig. 16) show that tip deflection occurs only when the pinning center is 
above a critical size, comparable to the dendrite tip radius. Larger pinning centers cause larger deflec-
tions. With increasing orientational misfit between the particle and the dendrite, dendrite tip deflection 
was found to increase. However, above a critical angular difference between the pinning center and 
the dendrite (∆θ ≈ 0.35), the pinning center is simply engulfed into the dendrite without deflection, 
while the tip splits to some extent. This is due to the high interface energy at these misorientations, 
creating an energetic preference for a small layer of liquid around the inclusion. In this case the wet 
phase boundary appears as a hole in the crystal. An important consequence of this effect is that the 
angle of tip deflection has an upper limit, thus preventing large deviations from the original growth 
direction. Pinning centers cause deflection only if directly hit by the dendrite tip, a finding confirmed 
by experiment. This explains the experimental observation that only a small fraction of the pinning 
centers influence morphology. Using an appropriate density of pinning centres comparable to the 
density of clay particles, a striking similarity is obtained between experiment and simulation (Fig. 17). 
This extends to such details as curling of the main arms and the appearance of extra arms. The disor-
der in dendrite morphology originates from a polycrystalline structure that develops during a sequen-
tial deflection of dendrite tips on foreign particles.  

Recent studies by Gránásy et al. [33, 196] show that increasing the number density of the for-
eign particles (orientation pinning centers) further increases the ‘randomness’ of the solidification 
morphology leading to a continuous transition from a ‘dizzy’ dendrite into the seaweed morphology 
(see discussion in Sec. 2.6.3). The perturbation caused by the foreign particle at the growth front leads 
to the formation of new crystal grains at the perimeter of the growing particle. Therefore, it has been 
termed as foreign-particle-induced growth front nucleation (GFN).    

Gránásy et al. investigated possible control of growth morphologies combining this mechanism 
with ‘intelligent’ orientation pinning centers [195]. The effect of uniformly oriented orientation pin-
ning centers of fixed orientation is shown in Fig. 18. The dendrite arms bend so that after a brief tran-
sient their fast growth directions coincide with those dictated by the pinning centers. In contrast, the 
uniformly rotating orientation pinning centers yield spiraling dendrite arms and a periodic concentric 
ring structure for the orientation field (Fig. 19). Parallel pinning lines of alternating orientation lead to 
zigzagging dendrite arms and a striped orientation map (Fig. 20). Experimental realization of these 
complex pinning conditions is certainly a challenge. Possible control methods might include the use 
of substrate-embedded oriented particles, the rotation of an external electromagnetic field, or angular 
momentum control by laser pulses [197]. Previous work has shown that particles are not  neces- 
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Figure 16. Deflection of a dendrite tip by an orientation pinning center in Model A. The first row shows the influence of the 
size of the pinning center: larger pinning centers cause larger deflections (the misorientation ∆θ is set to 0.333 below and 0.5 
above). In the middle row the effect of increasing misorientation ∆θ of (13 pixel-sized) pinning centers is shown. As the 
angle increases beyond 0.3 (or less than 0.7 by symmetry) the effective surface energy increases to the point where the 
boundary prefers to be ‘wet’, which results in tip splitting as opposed to deflection. The third row shows that unless the tip is 
precisely lined up with the (13 pixel) pinning center, the tip does not deflect, even though the misorientation is ∆θ = 0.3. ∆x 
is the lateral disposition. (Grayscale is the same as for the right panel of Fig. 6.) The simulations were performed on a 
300×300 rectangular grid (4 µm × 4 µm), with the thermodynamic properties of Ni-Cu, and 15 % anisotropy of the interface 
free energy. θ is normalized to vary between 0 and 1. 
 
 

  
 

Figure 17. Disordered (“dizzy”) dendrites formed by sequential deflection of dendrite tips on foreign particles: Comparison 
of experiments on 80 nm clay-polymer blend film (left, courtesy of V Ferreiro and J F Douglas; for the experimental details 
see [6]) and phase field simulation by Model A (right). (The simulation was performed on a 3,000 × 3,000 grid (39.4 µm × 
39.4 µm), with 18,000 single-pixel orientation pinning centers per frame.) 
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Figure 18. The effect of uniformly oriented foreign particles (black: orientation with the fast growth direction 30 degrees left 
of vertical) on a dendrite nucleated with the fast growth direction upwards (middle grey tone) in Model A. (Left: composi-
tion map; right: orientation map. The simulations were performed on a 3000 × 3000 grid (39.4 µm × 39.4 µm). Grayscale is 
the same as for the right panel of Fig. 6.) 
 

   
 
Figure 19. The effect of uniformly rotating foreign particles on a dendrite nucleated with the fast growth direction upwards 
(middle gray tone) in Model A. Note the spiraling arms and the periodic concentric ring structure of the local crystal orienta-
tion that preserves the temporary orientation at solidification. (Left: concentration map; center: orientation map; right: con-
centration map for a simulation with nucleation switched in.) The simulations were performed on a 3000 × 3000 grid (39.4 
µm × 39.4 µm). Grayscale is the same as for the right panel of Fig. 6 
 

   
 
Figure 20. The effect of orientation pinning lines (dark and light gray orientations – corresponding to having the fast growth 
direction 30 and 60 degrees left from vertical) on a dendrite nucleated with the fast growth direction upwards (middle gray 
tone) in Model A. (Left: composition map; right: orientation map.) Note the striped orientation structure. (Left: concentration 
map; center: orientation map; right: late stage of concentration map.) The simulation was performed on a 1,800 × 1,800 grid 
(23.6 µm × 23.6 µm). Grayscale is the same as for the right panel of Fig. 6.) 
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sary to nucleate crystallization in the thin polymer films, and that nucleation can be achieved by sim-
ply piercing the film with a sharp glass fiber [198]. By extension, it should be possible to print arrays 
of nucleation sites with specified symmetry of configuration by simply rolling a cylinder with an array 
of asperities over the uncrystallized polymer film. The orientation of nucleation points could be con-
trolled by making the asperities in the form of flat pins with controlled orientation. In this way, it 
should be possible to create a wide range of crystallization morphologies and to tune the topography, 
permeability and the mechanical properties of the crystallized polymer film. Such orientation-
controlling techniques may open a new route for tailoring solidification microstructures. 
 
2.6.2. Polycrystalline Growth in the Absence of Foreign Particles  

 

The mechanism described above is certainly not a general explanation for polycrystalline growth 
since spherulites have been observed to grow in liquids without particulates or detectable molecular 
impurities. How can this be understood? A clue to this phenomenon can be found in the observations 
of Magill [194], who noted that spherulites only seem to appear in highly undercooled pure fluids of 
sufficiently large viscosity. Interpreting Magill’s observations, Gránásy et al.  hypothesized [33, 196] 
that the decoupling of the translational and rotational diffusion coefficient at low temperatures is re-
sponsible for the propensity for polycrystalline growth in highly undercooled liquids. Specifically, a 
reduced Drot makes it difficult for the newly forming crystal regions to reorient with the parent crystal 
at the growth front advancing with a velocity that scales with the translational diffusion coefficient. 
Thus epitaxy cannot keep pace with solidification, i.e., the orientational order that freezes into the 
solid is incomplete. This situation can be captured within the phase field theory by reducing the orien-
tational mobility while keeping the phase field mobility constant as discussed in detail by Gránásy et 
al. [33, 101, 196]. 

The first step in this direction has been made by Gránásy et al. [101], who reported the forma-
tion of polycrystalline spherulite in Model A, when reducing the orientational mobility at large driv-
ing force. In previous calculations for the impingement of single crystals, the orientational mobility 
was set so that single crystal nuclei formed (see Fig. 21, left panel). (Though occasionally, a single 
nucleation event could initiate the simultaneous appearance of several orientations in the simulations 
– i.e., the formation of polycrystalline nuclei has been observed, a phenomenon observed also in 
experiments [199] and atomistic simulations [200].) When the orientational mobility is significantly 
reduced, the system cannot establish the same orientation along the perimeter of the particle; only 
local orientational ordering may take place, leading to the formation of new crystal grains with differ-
ent crystal orientations (Fig. 21, right panel). This process, which is responsible for the polycrystalline 
growth forms in pure systems, leads to similar results as the particulate heterogeneities, and represents 
a second form of growth front nucleation. 

 

  
 

Figure 21. The effect of reduced orientational mobility of solidification morphology (Model A): Left: The orientational 
mobility set so that a single orientation emerges from the nucleation events (single crystal nuclei). Right: Polycrystalline 
structure forming when the orientational mobility is reduced by a factor of 1/30. The system cannot establish the same orien-
tation along the perimeter; only local ordering is possible, yielding roughly spherical polycrystalline objects consisting of a 
large number of fine grains. Note that anisotropy is averaged out due to the large number of randomly oriented fine grains. 
(Orientation maps are shown. Grayscale is the same as for the right panel of Fig. 6. The simulation was performed on a 
1,500 × 1,500 grid (19.7 µm × 19.7 µm).) 
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Figure 22. The duality of the effects of foreign particles (upper row) and reduced orientational mobility (central row) on the 
polycrystalline growth morphology (Model A). The number of the foreign particles per frame and the factor by which the 
orientation mobility was reduced are given below the panels. Composition maps are shown (white: solidus; black: liquidus). 
The simulations were performed on a 1000 × 1000 grid (13.1 µm × 13.1 µm). For comparison experimental images showing 
a similar morphological transition on polymer films is also shown (lower row; experimental details are given in [203]), 
together with the reference (single crystal) dendritic structure (lower row, rightmost panel). 
 

 
Figure 23. Orientation maps for the images shown in Fig. 22, where available (no orientation map is available for the ex-
perimental images). (Grayscale is the same as for the right panel of Fig. 6.)  
 
2.6.3. Duality of Static and Dynamic Heterogeneities 

 

Gránásy et al. [33, 196] recently performed systematic studies of polycrystalline morphologies form-
ing via particulate induced GFN and low orientation mobility induced GFN. They observed that the 
two mechanisms lead to strikingly similar morphologies and grain structures (see Figs. 22 and 23). 
These results demonstrate a duality between the morphologies evolving due to the effects of static 
heterogeneities (foreign particles) and dynamic heterogeneities (quenched-in orientational defects).    

It is worth noting in this respect that a dendrite to polycrystalline seaweed transition has been 
observed in electrodeposition [201], and that polycrystalline seaweed structures are commonly ob-
served in electrochemical processes [12] or during the crystallization of electrodeposited layers [201, 
202]. Similar morphological transition has been seen during the crystallization of thin polymer films 
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[203]. Despite the success of modeling fractal-like morphologies on the basis of diffusion-limited-
aggregation [204, 205], details of the polycrystalline seaweed formation are poorly understood. 
Quenching of orientational defects into the crystal due to reduced rotational diffusivity under coupling 
with diffusion controlled fingering (as happens in our phase field model), offers a straightforward 
explanation for both the morphology and the polycrystalline nature. 

 
2.6.4. Formation of Spherulites 

 

Spherulites are ubiquitous in solids formed under highly non-equilibrium conditions [193]. As 
mentioned in the introduction, they are observed in a wide range of metallurgical alloys, in pure Se 
[7], in metallic and oxide glasses [190, 206], mineral aggregates and volcanic rocks [207, 208], poly-
mers [194, 209], liquid crystals [210, 211], simple organic liquids [212], and diverse biological mole-
cules [3, 213-215]. Many everyday materials, ranging from plastic grocery bags to airplane wings and 
cast iron supporting beams for highway bridges, are fabricated by freezing liquids into polycrystalline 
solids containing these structures. The properties and failure characteristics of these materials depend 
strongly on their microstructure, but the factors that determine this microstructure remain poorly un-
derstood. 

While the term ‘spherulite’ suggests a nearly spherical shape (circular shape in two dimensions 
where the term spherulite is still employed), this term is used in a broader sense of densely branched, 
polycrystalline solidification patterns [8 – 11, 193, 194, 207 – 225].  

Experimental studies performed over the last century indicate that there are two main categories 
of spherulites [11, 216, 217]. Category 1 spherulites grow radially from the nucleation site, branching 
intermittently to maintain a space filling character (Fig. 24). In contrast, Category 2 spherulites grow 
initially as thread-like fibers, subsequently forming new and new branches at the growth front (Fig. 
24). This branching of the crystallization pattern ultimately leads to a crystal ‘sheaf’ that increasingly 
splays out during growth. At still longer times, these sheaves develop two ‘eyes’ (uncrystallized re-
gions) on each side of the primary nucleation site. Ultimately, this type of spherulite settles down into 
a spherical growth pattern, with eye structures apparent in its core region. In some materials, both 
categories of spherulite occur in the same material under the same nominal thermodynamic condi-
tions. 

The formation of spherulites has been addressed by various theoretical approaches that relate 
the large scale structure to the diffusion length [193] or to the wavelength of the Mullins-Sekerka 
instability [226]. Nucleation controlled growth of polymers has also been explored [227, 228]. One of 
the popular ideas used to explain the formation of spherulites envisions a regular branching of crystal-
line filaments with well-defined branching angle (see e.g., [7, 11, 194, 218]). While the details of such 
a mechanism necessarily differ on the molecular scale for the many systems that display spherulitic 
solidification, we hope to capture the general features of this process. To incorporate branching with a 
fixed orientational misfit, we included a new form of the orientational free energy (see Model C in 
Appendix). Here the orientational free energy has a second (local) minimum as a function of misori-
entation angle ξ0∇θ, where ξ0 is the correlation length of the orientation field. Thus, during orien-
tational ordering at the solid-liquid interface, a second low free energy choice (preferred misorienta-
tion) is offered. Accordingly, the cells that have a larger misorientation, than the first (local) maxi-
mum of the fori versus ξ0∇θ relationship, may relax towards the local minimum, unless the orienta-
tional noise prevents settling into this local minimum.  

                               
                          Category 1                                                       Category 2 

                 
Figure 24. Concepts for the formation of Category 1 and 2 spherulites. From left to right: Category 1 spherulite formed via 
central multidirectional growth. Formation of Category 2 spherulite from a folded-chain single crystal (A) to the fully devel-
oped spherulite (E) via unidirectional growth and low angle branching [11]. Note that the latter mechanism may lead to the 
formation of two ‘eyes’ (uncrystallized holes) on the sides of the nucleation site. 
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Figure 25. Isothermal transition between a square-shaped single crystal and a Category 1 spherulite induced by growth front 
nucleation, as predicted by the phase field theory (Model C). Note the gradual morphological transition, and the lack of a 
sharp demarcation line between areas solidified with square and spherulitic morphology in the fully-grown spherulite. With 
increasing size, the shape becomes more isotropic due to the randomizing effect of the newly formed grains. Note also the 
self-organized selection of grains whose maximum growth direction is perpendicular to the interface, yielding a cross-like 
pattern of grains with equivalent crystallographic orientations. (4000 × 4000 grid. Snapshots taken at 500, 2000, 7500, and 
15,000 dimensionless time-steps, respectively are displayed.) Upper row: composition maps (a grayscale color map was 
employed to increase contrast: black – liquidus, white – solidus). Lower row: orientation maps (Grayscale is the same as for 
the right panel of Fig. 6, except that to enhance the visibility of the pattern, the liquid regions are colored black). 
 

Category 1 spherulites have been seen to form from transient single crystal nuclei [219]. Model 
C captures the gradual transition from square-shaped single crystals to circular shape under isothermal 
conditions. As seen in simulation, square-shaped single crystals nucleate after an initial incubation 
period. After exceeding a critical size (that depends on the ratio χ of the rotational and translational 
diffusion coefficients), the growing crystal cannot establish the same crystallographic orientation 
along its perimeter. Thus new grains form by growth front nucleation [196] as described in the intro-
duction. This process gradually establishes a circular perimeter for large particles (Fig. 25).  

Many studies of the early stages of spherulite growth, especially in polymers, indicate that these 
structures initially grow as slender thread-like fibers [8 – 11, 193, 194, 209 – 224]. These structures 
successively branch to form space-filling patterns. A large kinetic anisotropy (δ0 = 1.99) of two-fold 
symmetry is assumed, as this is expected in polymeric systems that have the propensity to form crys-
tal filaments. Otherwise, properties of the familiar Ni-Cu system are used, as many of this systems 
model parameters are known, and the phase diagram is particularly simple. We include a preferred 
misorientation angle of 30 degrees (m = 3 and x = 0.15). The resulting growth morphologies are 
shown as a function of supersaturation in Fig. 26. Ideally, in a system where filament branching hap-
pens with a 30 degree misfit, the polycrystalline growth form may consist of only grains that have six 
well-defined orientations (including the one that nucleated), which differ by multiples of 30 degrees. 
This effect is especially pronounced at low supersatuations, while at high supersaturations noise-
driven faults randomize the local orientation. At low supersaturations, needle crystals form. With 
increasing driving force, the branching frequency increases, and more space filling patterns emerge, 
while the average grain size decreases. This leads to a continuous morphological transition that links 
the needle-crystals forming at low supersaturation to axialites, to crystal sheaves, and eventually to 
category 2 spherulites (with ‘eyes’ on the two sides of the nucleus) that form at far from equilibrium. 
We see (second row Fig. 26) that the ‘eyes’ become increasingly small with increasing supersatura-
tion, due to the increase in GFN. 



 27

    
 

    
 

    
 

Figure 26. Polycrystalline morphologies formed by random branching with a crystallographic misfit of 15 degrees (Model 
C). The kinetic coefficient has a two-fold symmetry and a large, 99.5%, anisotropy, expected for polymeric substances. 
Simulations were performed on a 3000 × 3000 grid (39.6 µm × 39.6 µm). Upper row: composition map (light gray: solidus, 
dark gray: liquidus). Central row: grain boundary map (the gray scale in solid [crystal] shows the local orientational free 
energy density fori). Lower row: orientation map. (The shading of the orientation map is an adaptation of the scheme shown 
in previous figures for two-fold symmetry: When the fast growth direction is upwards, 60, or 120 degrees left, the grains are 
colored middle, dark or light gray, respectively, while the intermediate angles are denoted by a continuous transition among 
these hues. Owing to two-fold symmetry, orientations that differ by 180 degree multiples are equivalent.) Unless noise inter-
venes, twelve different orientations are allowed, including the orientation of the initial single crystal nucleus, which was set 
common for all simulations (30 degrees off horizontal direction [light gray]). In order to make the arms better discernible, in 
the orientation map, the liquid (which has random orientation, pixel by pixel) has been colored black. The supersaturation 
varies from left to right as S = 0.85, 0.875, 0.90 and 0.95. Note that the branching frequency increases with increasing driv-
ing force. 

 
Next, the time evolution of a Category 2 spherulite is considered at a fixed supersaturation (Fig. 

27). First, fibrils form and then secondary fibrils nucleate at the growth front to form crystal 
‘sheaves’. The diverging ends of these sheaves subsequently fan out with time to form eyes, and fi-
nally a roughly spherical growth form emerges. This progression of spherulitic growth is nearly uni-
versal in polymeric materials [11, 209, 217]. 

What characterizes the difference between Category 1 and 2 spherulites? For category 1 
spherulites, isotropy is achieved rapidly. In Fig. 25, the initial crystal had a 4-fold symmetry, and the 
high frequency of GFN and the associated branching leads to isotropic growth. Thus, disorder disrupts 
the crystalline anisotropy early in the growth process, yielding category 1 spherulites. In Fig. 27 the 
initial growth is fibrillar, in contrast with Fig. 25, and it takes much longer, at the same level of super-
saturation (and consequent GFN), for this randomization to occur. The occurrence of Category 2 
spherulites is directly related to the prevalence of early-stage fiber-type growth in comparison with 
the branched growth. In addition, as we increase the driving force, the time at which the growth be-
comes isotropic on average decreases and the structural differences between Category 1 and 2 spheru-
lites diminish. 
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Figure 27. The birth of a Category 2 spherulites at unit supersaturation, in the phase field theory (Model C). Time increases 
from left to right. (Snapshots taken at 4.2, 8.4, 12.6, 33.5 µs after nucleation are shown. The dimensionless time used in the 
calculations has been transformed to real time using the diffusion coefficient of liquid Ni-Cu: DNiCu = 10−5 cm2/s. For other 
diffusion coefficients D, the times presented here have to be multiplied by DNiCu/D.) Upper row: composition map; lower 
row: orientation map. Coloring and other conditions are as for fifth column in Fig. 26. 

 
In which systems are these growth patterns prevalent? Category 1 spherulites, are a normal 

mode of growth in metallic and mineral systems, where fibrous growth is relatively rare. On the other 
hand, category 2 spherulites are ubiquitous in polymeric systems. In such fluids, high supercoolings 
are readily attained due to their complex molecular structure, and the fiber growth habit is characteris-
tic of the chain-folding mechanism by which polymers crystallize [8 – 11, 209 – 224]. 

Category 1 and 2 spherulites may form under the same experimental conditions. How can this 
be understood? The early stage of growth strongly influences the late stage morphology of the spheru-
lite. Under circumstances where the initial growth form is perturbed by fluctuations, an admixture of 
Category 1 and 2 spherulites is obtained. For example, simultaneous nucleation of several orientations 
within the same nuclei should generally yield Category 1 spherulites, but such events may be rare, and 
so the structures will coexist with Category 2 spherulites. Such multi-orientation nucleation events 
have been found in experiments on silica embedded silver particles [199] and by atomistic simulations 
for simple liquids [200]. Multiple nucleation events have been observed in atomic force microscopy 
measurements of polymer spherulite formations in thin films [220 – 222]. 

In the growth of compact space-filling spherulites chemical or thermal diffusion plays a negli-
gible role. Under these conditions, the time evolution of the extent of crystallization X follows the 
Johnson-Mehl-Avrami-Kolmogorov (JMAK) scaling X = 1 − exp{−[(t − t0)/τ]p}, where t0 is an incuba-
tion time due to the relaxation of the athermal fluctuation spectrum, τ is a time constant related to the 
nucleation and growth rates, and p = 1 + d is the Avrami-Kolmogorov exponent, while d is the num-
ber of dimensions [120]. Accordingly, for constant nucleation and growth rates in an infinite 2D sys-
tem p = 3 applies. We investigated the transformation kinetics for noise-induced nucleation in a rela-
tively large system (5,000 × 5,000 grid). To avoid the unnatural starting transient emerging from 
noiseless initial conditions (constant phase and concentration fields), first we heat-treated the system 
at 1595 K (above the liquidus curve) for 10,000 time steps, then we quenched it to 1574 K. The re-
sults are shown in Fig. 28. Fitting the JMAK relationship to the simulation data between 0.01 < X <  



 29

  

 
 
Figure 28. Nucleation and growth of polycrystalline spherulites in the phase field theory (Model C). (Simulation on a 5,000 
× 5,000 grid). Upper row: Left concentration map; right orientation map. Lower row: Left: Transformed fraction vs. dimen-
sionless time (dashed line), JMAK curve with the best-fit parameters (solid line). Right: Avrami-Kolmogorov exponent as a 
function of crystalline fraction. 
 
 
0.95 (where the data are the least noisy), we find p = 3.04 ± 0.02 (and τ = 0.0106 ± 0.00005, t0 = 
0.00178 ± 0.00005), which is reasonably close to the p = 3, expected for such a transition [120]. 
 
 
                                                (a)                (b)                           (c) 

   

   
 

Figure 29. Multistage heat treatments involving spherulitic solidification, as predicted by the phase field theory (Model C): 
Transition between a faceted crystal habit; (a) nucleated at 1575 K] and (b) a spherulitic array after the sample is quenched 
to, and crystallized isothermally at 1571 K (Mθ is reduced by a factor of 20), and back to faceted growth (c) after returning to 
1575 K. (Compared to polymers, this system requires a relatively small temperature cycling range due to the ideal solution 
behavior of the Ni-Cu system.) Note the formation of new crystal grains due to GFN during the low temperature stage of the 
cycling. The computations were performed with 5% anisotropy of the interface free energy (of six-fold symmetry) and 85% 
anisotropy of the phase field mobility (of two-fold symmetry) on a 1000 × 1000 grid. Upper row: composition maps (black: 
liquidus, light gray: solidus). Lower row: orientation maps (grayscale as in Fig. 6). 
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                                                           (a)                (b)   

  

  
 

Figure 30. Multistage heat treatments involving spherulitic solidification, as predicted by the phase field theory (Model C): 
Morphologies formed after two thermal routes are shown which have the same final temperature. In (a) spherulitic solidifica-
tion occurs at 1574 K after direct quenching from above the melting point (1595 K).  In (b) spherulitic solidification occurs 
at 1574 K, after deep quenching first to 1350 K. Note the similarity of the growth forms, and the enhanced number of crys-
tallites in the latter case. The computations were performed with 10% anisotropy of the interface free energy (of four-fold 
symmetry) on a 500 × 500 grid. Upper row: composition maps (black: liquidus, light gray: solidus). Lower row: orientation 
maps (grayscale as in Fig. 6). 

 
 
 

                                      (a)     (b)               (c) 

   

   
 

Figure 31. Multistage heat treatments involving spherulitic solidification, as predicted by the phase field theory (Model C): 
In (f)–(h) spherulitic overgrowth occurs on pre-existing square crystals with parallel nucleation and growth of spherulites. 
Square-crystals were formed at 1574 K isothermally, then quenched to 1570 K where crystallization completed. The compu-
tations were performed with 15% anisotropy of the interface free energy (of four-fold symmetry) on a 1000 × 1000 grid. 
Upper row: composition maps (coloring: a grayscale colormap was employed to increase contrast: black – liquidus, white – 
solidus). Lower row: orientation maps (grayscale as in Fig. 6). 
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There is a great deal of interest in how temporal variations in processing conditions (tempera-
ture, pressure, etc.) influence spherulitic growth morphology. Multistage heat treatments on polymeric 
substances have demonstrated that that both the local growth morphology and growth rate depend on 
the temperature, but are independent of previous thermal history [194, 212, 219]. For example, cy-
cling between two temperatures reversibly switches between faceted and spherulitic growth mor-
phologies both in experiment [194, 219] and simulation [Fig. 29(a)-(c)]. The predominance of either 
growth morphology depends on the cycling time, and complex patterns are generated in this fashion. 
For example, following experiment [219], we can simulate either a direct quench to the temperature of 
spherulitic solidification from above the melting point or instead simulate a deeper quench followed 
by heating to the same final temperature. As shown in Figs. 30(a),(b) these different histories yield 
much the same late stage growth form, but a larger number of spherulites in the latter deep quench 
case (due to enhanced nucleation at lower temperatures). Finally, other experiments [219] show that 
spherulitic overgrowth occurs on square-shaped crystals grown at small undercoolings, while, simul-
taneously, normal spherulites fill the remaining space. This behavior is recovered by our phase field 
simulations [Fig. 31(a) – (c)]. The ability of Model C to reproduce such complex sequences suggests 
that our field theory contains the essential physics necessary to describe a broad range of real materi-
als. 

We now return to the wide range of spherulitic crystallization patterns shown in Fig. 1. Can 
Model C explain this variability? Fig. 32 shows a selection of simulations that bear resemblance to the 
experimentally observed morphologies [7 – 9, 11, 193, 211, 223 – 225]. In addition to the category 1 
and 2 spherulites described above, we observe structures ranging from spiky and arboresque spheru-
lites, to ‘quadrites’ [11, 223] exhibiting a cross-hatching fine structure [see Fig. 1(d)], to undulating 
branched patterns. These simulations differ only in the driving force, anisotropies, branching angle,  

 
   (a)                                                      (b)                                                       (c) 

   
 

     (d)                                                      (e)                                                       (f) 

   
 

     (g)                                                      (h)                                                       (i) 

   
 

Figure 32. A selection of polycrystalline growth morphologies vs. patterns from phase field simulations (Model C): The 
experimental and theoretical images are arranged into pairs. Left: experiment; right: simulation. Note that with a few macro-
scopic parameters (anisotropy of the interface free energy and kinetic coefficient, branching angle, and depth of the metasta-
ble well of the orientational free energy) a broad variety of solidification patterns can be captured. (The experimental images 
originate from the following works: (a) reprinted from [224],  1964, with the permission of the AIP; (b) reprinted from 
[193],  1963, with the permission of the AIP; (c) reprinted from [225]; (d) reprinted from [11]; (e) reprinted from [223],  
1986, with the permission of Wiley; (f) reprinted from [7],  1988, with the permission of Elsevier; (g) reprinted from [8], 
 1993, with the permission of ACS; (h) reprinted from [211],  2000, with the permission of Elsevier; (i) reprinted from 
[9],  1965, with the permission of AIP.)  
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Figure 33. Fractal-like polycrystalline aggregate grown on planar single crystal surfaces as predicted by the phase field 
theory (Model C). The branching angle is 60°, x = 0.3, supersaturation of 0.9, while a 99.5% anisotropy and a twofold sym-
metry of the kinetic coefficient are assumed. The calculation has been performed on a rectangular grid of size 3000 × 2000. 
The composition and orientation maps are shown (up and down, respectively). Grayscale is the same as for Fig. 26. 
 
and mobilities, indicating that the essential features of a broad variety of spherulitic morphologies can 
be captured, using only a few model parameters. Another interesting polycrystalline morphology is 
the disordered fractal-like growth form seen in electrodeposition [12] [Fig. 1(i)]. With appropriate 
choice of model parameters this pattern can also be recovered (Fig. 33).  

Work is underway to map the zoo of possible polycrystalline morphologies. While the similar-
ity of the simulations and the experimental patterns is reassuring, further experimental work is also 
needed to determine, whether the predicted grain structures are indeed realistic. The study on spheru-
lites summarized above has been done by the present authors in collaboration with J. A. Warren and J. 
F. Douglas from the National Institute of Standards and Technology, Gaithersburg. Details will be 
presented elsewhere [229]. 

 
2.7. Crystallization in the Presence of Walls 

 

Solidification in the presence of walls is of great practical importance. In casting, solidification usu-
ally starts by heterogeneous crystal nucleation on the walls of the mould (see e.g., [230]). With the 
exception of extremely pure samples, even volume nucleation happens mostly via a heterogeneous 
mechanism (on the surface of floating foreign particles) [231]. Particulate additives are widely used as 
grain refiners, to reduce grain size by enhancing the nucleation rate. Nonetheless, heterogeneous nu-
cleation is probably the only stage of solidification where the micro-mechanism of the process is 
largely unknown. (An exception is the inoculation of metallic alloys, where the number of grains is 
controlled by the free growth condition rather than heterogeneous nucleation itself [232 – 234].) 
While condensation on solid substrate or in slit pore has been addressed with advanced methods [235 
– 238], fewer investigations have been performed for heterogeneous crystal nucleation.  

Although the phase field method has been used to address problems that incorporate heteroge-
neous nucleation, this process is usually mimicked introducing supercritical particles into the simula-
tion window [70, 71]. Recently, however, steps have been made towards a physical modeling of het-
erogeneous nucleation within the phase field theory. Castro [174] introduced walls into a single order 
parameter theory by assuming a no-flux boundary condition at the interface (n∇φ = 0, where n is the 
normal vector of the wall), which results in a contact angle of 90 degrees at the wall-solid-liquid triple 
junction. Langevin noise is then introduced to model nucleation. It has been found that the presence of 
walls enhances nucleation, and thus the internal corners are places where nucleation is more likely to 
occur.  

Prescribing (n∇φ) = 0 and (n∇c) = 0 at the wall perimeter, Gránásy et al. introduced chemi-
cally inert surfaces into Model A, and performed simulations to address heterogeneous volume nu-
cleation on foreign particles (a more detailed description than the ‘pinning centers’), on rough sur-
faces, and in confined space (porous matter and channels) [33, 238]. A few preliminary results, which 
illustrate that various complex phenomena can be addressed this way, are shown in Figs. 34 – 40. 
These include noise-induced nucleation of dendritic crystals on square-shaped particles and rough  
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Figure 34. Heterogeneous nucleation of dendritic crystals on square-shaped foreign particles as predicted by the phase field 
theory (Model A). Composition maps are shown. Coloring: dark gray: foreign particles; black: liquidus; white: solidus; light 
gray: initial liquid. 
 
 
 
 

  
 

  
 

Figure 35. Heterogeneous nucleation on rough surfaces as predicted by the phase field theory (Model A). Composition maps 
are shown. Black: substrate; white: solid; grays: liquid. To enhance the visibility of details, the contrast of the images has 
been increased. 
 
 

 

    
 

Figure 36. Heterogeneous nucleation and growth of stoichiometric crystals in porous matter as predicted by Model A. 
Chemical composition maps are shown (white: particles of porous matter, black: crystal, gray: liquid). (The model describes 
the formation of solid CO2 hydrate in a supersaturated aqueous CO2 solution at T = 274 K, and at a pressure of P = 15 MPa.) 
Note that nucleation happens in the notches between particles of the porous matter, and the depletion zone forming around 
the growing crystals. 
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Figure 37. Dendritic solidification in a two-dimensional orientation selector (pigtail) mimicking the casting of single crystal 
components as predicted by Model A. Top: composition field (dark gray: mould; black: liquidus; white: solidus; light gray: 
initial liquid); bottom: orientation field (grayscale is the same as in right panel of Fig. 6, white: mould).] Crystallization 
starts on the left with several crystallographic orientations, but only a single crystallographic orientation survives the mean-
dering channel to reach the liquid volume on the right in the simulation box. 
 

   
 

   
 

Figure 38. Phase field calculations for noise-induced heterogeneous crystal nucleation on stairs in three dimensions. Proper-
ties of Ni and the physical interface thickness (1 nm) are used. The calculation was performed at 1200 K on a 200×200×200 
grid (40 nm×40 nm×40 nm). Note that as expected nucleation happens at the inside corners of the stairs, a position energeti-
cally preferred. The shiny black surface corresponds to the solidification front (φ = ½), while the light spotted gray regions 
denotes bulk crystalline properties. 

 
 
 

surfaces, particle engulfment, solidification in porous medium, and in a rectangular channel (orienta-
tion selector), in two and three dimensions. In the 3D calculations, a simpler model is used, that does 
not handle the differences in the crystallographic orientation (Model A without orientation field).   

Heterogeneous noise-induced nucleation has been investigated in various geometries including 
a stair-like surface, porous medium (represented by cubes placed on a bcc lattice), and 3D checker-
board-like modulated surface (Figs. 38 – 40). Such studies may contribute to a better understanding of 
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processes that can be used in micro/nano-patterning. Future work will explore the kinetics of such 
processes, and extend the modeling to arbitrary contact angles.   
 

  
 

  
 
Figure 39. Phase field calculations for noise induced heterogeneous crystal nucleation on cubic particles arranged on a bcc 
lattice. Properties of Ni and the physical interface thickness (1 nm) are used. The calculation was performed at 1200 K on a 
300×300×300 grid (60 nm×60 nm×60 nm). 
 

  
 

  
 
Figure 40. Phase field calculations for noise induced heterogeneous crystal nucleation on a 3D checkerboard-modulated 
surface. Properties of Ni and the physical interface thickness (1 nm) are used. The calculation was performed at 1200 K on a 
400×400×200 grid (80 nm×80 nm×40 nm). 
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3. SUMMARY AND FUTURE DIRECTIONS 
 

In the previous section we demonstrated the capability of the phase field method to describe complex 
polycrystalline morphologies. This includes nucleation and growth problems in anisotropic systems, 
the effect of particulate additives and trapped disorder on growth morphologies, solidification in con-
fined space, and many others. However, systematic studies are needed on all areas discussed here 
(e.g., mapping of possible morphologies, study of transformation kinetics in the presence of walls, 
etc.). Of particular interest to us is the validation of the models that include random branching. This 
requires the collection of statistics on the morphologies both in theory and experiment, as these pat-
terns may have only statistical similarity. Straightforward extensions of the work performed with 
Model A to C may include coupling to hydrodynamics (an essential step to study particle-front inter-
action) as done for simpler cases [21, 106, 239 – 246], and dynamically changing temperatures [247, 
248]. Interesting further directions for polycrystals are the modeling of crack dynamics [249, 250], 
and the addressing of reaction-diffusion type phenomena such as oxidation, hydrogenation, electro-
deposition [251 – 253], etc. 

The largest theoretical challenge is perhaps the generalization of the model to three dimensions. 
This requires minimum three orientational fields (e.g., two polar angles that set the fast growth direc-
tion in 3D, and a third angle that specifies the rotation of the crystal around this axis). Recent work 
offers two equivalent solutions to this problem [254 - 257]. Kobayashi and Warren [254, 256] ad-
dressed grain boundary dynamics in 3D, while Pusztai et al. [255,257] describe polycrystalline solidi-
fication in 3D, including the growth of several dendritic particles (Fig. 41) and the nucleation and 
growth of needle crystals with different crystallographic orientations and the formation of polycrystal-
line spherulites, sheaves (Fig. 41) and seaweed-like patterns.     

The simplistic model of elasticity that these models inherently contain should be refined using 
the continuously developing inventory of phase field models for solid-state transformations [93, 258–
264]. The broad interface remains an issue (enhanced solute trapping, etc.). New approaches (e.g., 
[265]) should address some of the numerical issues associated with too thick interfaces, while interac-
tion with atomistic scale modeling will help to fix the model parameters for quantitative calculations.  

Simulations with “no-flux” walls represent only a significantly simplified description of the in-
teraction of crystallization with foreign solid surfaces (substrate). A full treatment of heterogeneous 
nucleation has to incorporate the chemical interactions, shall include an extra phase field for the sub-
strate, while the coefficients of the associated gradient terms will incorporate the energetics that de-
termines the contact angle at the liquid-crystal-substrate junction. 

 

 
 

Figure 41. Phase field simulations in 3D for the growth of four randomly oriented crystal nuclei (left) with cubic crystal 
symmetries and for the formation of a polycrystalline sheaf (right) (by Pusztai, Bortel and Gránásy). The φ = 0.5 surfaces are 
shown. The dendrites were grown on a 400×400×400 grid (5.25 µm×5.25 µm×5.25 µm) with cubic crystal symmetries and a 
corresponding kinetic anisotropy, while the simulation for the sheaf has been performed on a 500×250×250 grid (6.56 
µm×3.28 µm×3.28 µm) with triclinic crystal symmetries and an ellipsoidal anisotropy of the kinetic coefficient. Note the 
effect of periodic boundary conditions: the dendrite arms growing out of the simulation box on one side enter on the opposite 
side. 
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Regarding future directions, we mention a most remarkable new approach to polycrystalline so-
lidifications by Elder et al. [266] that allows for atomistic modeling of the solid-liquid transition on 
diffusive time scales. A negative square gradient term is balanced here by a positive fourth order term, 
yielding homogeneous (liquid) regions and crystalline (‘dots’ on lattice) regions in the phase diagram, 
with a first order phase transition in between. The model naturally incorporates crystal anisotropy, 
elastic and plastic deformations, grain boundaries, cracks, epitaxy, etc. [266, 267]. Its results are con-
sistent with the Read-Shockley theory of grain boundary energy and the Matthews-Blakeslee theory 
for misfit dislocations in epitaxy [266, 267]. The model has been applied for eutectic solidification 
and dendritic growth [268]. A computationally efficient coarse-grained field theory, equivalent with 
this atomistic phase field model, has been developed using renormalization technique by Goldenfeld 
et al. [269]. With the ever-increasing power of computers, these approaches are expected to take over 
many of the tasks of the conventional phase field theories, provided that their 3D generalizations turns 
out to be as successful as the 2D forms. 

Finally, one should mention recent advances made using the multi-phase-field approach in 
modeling various aspects of polycrystalline solidification [270-273]. Further work is, however, 
needed (i) to clarify third phase appearance at the phase boundaries, and (ii) to consider crystal sym-
metries in grain boundary formation/evolution (a problem successfully addressed by phase field ap-
proaches with orientation fields in 2D and 3D [141-144,255,257]). 

Summarizing, we believe that, in the foreseeable future, phase field theories, and field theoretic 
methods in general, will remain among the most powerful tools of computational materials science. 
They will significantly contribute to our qualitative understanding of crystallization processes includ-
ing nucleation, and will become useful in quantitative modeling of the formation and evolution of 
crystalline microstructure from the nanometer scale to the micron or even to the millimeter scale. 
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APPENDIX 
 

We specify here three models (Models A, B and C), which show rather similar features, however, 
differ in important details such as the form of the free energy functional. Note that the models termed 
here as Models A to C differ from Models A to C of the usual Hohenberg-Halperin [37] classification.  
 
A.1 Model A 

 

The local state of matter is characterized by the phase field φ. This order parameter describes the ex-
tent of structural change during freezing and melting. The other basic field variables are the chemical 
composition c and the normalized orientation field θ [99, 100], where θ specifies the orientation of 
crystal planes in the laboratory frame. The free energy F consists of various contributions that will be 
discussed below:  
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Here εφ and εc are the coefficients of the square-gradient term for the fields φ and c; wi is the free en-
ergy scale for the i-th pure component (i = A, B); s, g and p are the anisotropy function, the quartic 
double-well function and the interpolation function. γi, δi, Ti are the interface free energy, interface 
thickness and melting point for the i-th pure component (i = A, B). ϑ is the inclination of the normal 
vector of the interface in the laboratory frame. H determines the free energy of the low angle grain 
boundaries. s0 is the amplitude of the anisotropy of the interface free energy, while m is the symmetry 
index (m = 6 for six-fold symmetry). Time evolution is governed by relaxational dynamics and Lange-
vin noise terms are added to model thermal fluctuations [99, 100], 
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where ζi are the appropriate Langevin-noise terms.  

The time scales for the three fields are determined by the appropriate mobilities appearing in the 
equations of motion, and Mφ, Mc and Mθ are the mobilities associated with coarse-grained equation of 
motion, which in turn are related to their microscopic counterparts. The mobility Mc, is directly propor-
tional to the classic interdiffusion coefficient for a binary mixture. The mobility Mφ dictates the rate of 
crystallization, while Mθ controls the rate at which regions reorient.   

 
A.1.1. Phase Field  

 

Using the length and time scales ξ and ξ 2/Dl, respectively (Dl is the chemical diffusion coefficient in 
the liquid), the dimensionless phase field mobility mφ = mφ,0 {1 + δ0 cos[k(ψ − θ)]}, and mφ,0 = 
Mφεφ2T/Dl, the following dimensionless form emerges 
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Henceforth quantities with tilde are dimensionless, while prime denotes differentiation with respect to 
the argument of the function. 

 
A.1.2. Concentration Field  

 

Following previous work [50, 51], we choose the mobility of the concentration field as Mc = (vm/RT) 
D c (1 − c), where vm is the average molar volume, and D = Ds + (Dl – Ds) p(φ) is the diffusion coeffi-
cient. This choice ensures diffusive equation of motion. Since HT is assumed independent of concen-
tration, no coupling to the orientation field emerges. Introducing the reduced diffusion coefficient λ = 
D/Dl, the dimensionless equation of motion for the concentration field reads as 
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A.1.3 Orientation Field  

 

Introducing the dimensionless correlation length of the orientation field ξξξ /
~

00 = , and defining the 
dimensionless orientational mobility as mθ = [Mθ,S + (Mθ,L − Mθ,S )⋅p(φ)] ξHT/Dl, the dimensionless 
equation of motion is as follows as 
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This form of fori, and the noise added to the equation of motion ensure that the orientation field θ is 
random in space and time in the liquid. This makes possible to quench orientational defects into the 
solid, leading to polycrystalline growth. Independently, branching with fixed relative misorientation 
may occur, i.e., sharp (step-like) grain boundaries of fixed orientational misfit (of fixed grain bound-
ary energy) appear. 

The second term on the RHS of (A5) must be handled with care. It is negligible if the physical 
interface thickness (~ 1 nm) is used. Due to limitations of computer power, we employ a relatively 
broad interface compared to those found in metallic alloys. This broad interface leads to artifacts that 
are not present with thinner interfaces. As a practical matter, we adopt one of the following measures: 
(a) perform the calculations in the presence of only kinetic anisotropy (then this term is zero); (b) we 
omit this term. 

In modeling eutectic and peritectic solidification with locked orientational relationship between 
the two solid phases (α and β), we make the following additional assumptions: In solids of composi-
tion close to the equilibrium ones, the grain boundary model used for the single solid case is retained 
(i.e., fori ∝∇θ). At the interface between the two solid phases a non-zero orientation change is pre-
ferred. This orientation change is assumed to be independent of the inclination of the solid-solid inter-
face. To implement these, the orientation free energy is assumed to be composition dependent: fori = [1 
− p(φ)] HT⋅ F(c,|∇θ|, |∇θ |2), where F = h(c) F1(|∇θ|) + [1 − h(c)] F2(|∇θ |) + 1/2 εθ2T (HT)−1|∇θ |2. The 
square-gradient term for the orientation field is needed to allow for grain boundary motion (besides 
grain rotation [141]). We use the following set of functions  

 
h(c) = 1/2 {1 + cos[(c−cα)/(cβ−cα)2π]}, 

 
F1(|∇θ |) = |∇θ |, 

 
F2(|∇θ |) = a + b |cos(2nπd|∇θ | + ψ)|. 

 
Here cα and cβ are the equilibrium solid compositions, a and b are constants, d is the interface thick-
ness, while n, or ψ, or both can be used to define the preferred orientation change at the interface. 
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Note that function h(c) switches on the preference for the orientation change for solid compositions 
that differ significantly from the equilibrium solid compositions cα < c < cβ. Such intermediate com-
positions normally occur only at the α − β interface in the solid. Anisotropy of the interface free en-
ergy might be incorporated via making either εθ2 or ψ dependent on the interface inclination angle ϑc 
= atan[(∂c/∂y)/(∂c/∂x)]. While the functions used here have been chosen intuitively, for different crys-
tal structures, F1 and F2 can be deduced on physical grounds.   

Having defined these relationships, new terms emerge in the governing equations. The actual F 
= h(c) F1 + [1 − h(c)] F2 + 1/2 εθ2T (HT)−1 |∇θ |2 function enters into equation (A3), its first derivative 
F’ = h(c) F1’ + [1 − h(c)] F2’ + εθ2 T (HT)−1 |∇θ | appears in equation (A5), and the terms shown below 
are added to the RHS of equation (A4).  
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In all cases the governing equations have been solved numerically using an explicit finite dif-

ference scheme. Unless stated otherwise periodic boundary conditions were used. Convergence of the 
solution with the orientational equation needs that the time step for the orientation equation be less 
than about 1/30 of the time step required for the stable solution of the other fields.  

A parallel code has been developed that relies on the Message Passing Interface (MPI) protocol 
and was run on two PC clusters built up in the Research Institute for Solid State Physics which is 
dedicated exclusively to phase field simulations. At present, the clusters consist of 60 and 100 nodes, 
respectively and a server machine for each. All simulations shown in this paper have been performed 
on these clusters.  
 
 
A.2. Model B 

 

Model B is a four-field extension of Model A. The extra phase field monitors the transition between 
solid phases (structures) α and β. Regular thermodynamics is used and a square-gradient term is in-
corporated for the concentration. The free energy functional reads as 
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where 
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wφ (c) = (1 − c) wA + c wB, and fα(c,T) and fβ(c,T) are taken from the regular solution model. The coeffi-
cients εψ2 and wψ can be fixed using the phase boundary energy and interface thickness, if there exists 
a temperature Tx, where the α and β phases are in equilibrium. The orientational contribution to the 
free energy is set as follows: 
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where the function 1 − h(ψ) activates the term F1 in the interface region that initiates a jump of a pre-
scribed amplitude in the orientation field. The following four equations of motion apply. 
 
 
 
A.2.1 Solid-Liquid Phase Field  
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A.2.2. Solid-Solid Phase Field  
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where ∆fα,β (c, T) = fL(c, T) − fα,β (c, T), and mψ = Mψεψ2T/Dl is the dimensionless mobility of the solid-
solid phase field, ψ. 
 
A.2.3. Concentration Field  
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A.2.4. Orientation Field  
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where G = sign[cos(2πnξ0∇θ)] sin(2πnξ0∇θ)2πnx, while the dimensionless orientational mobil-
ity is mθ = [Mθ,S + (Mθ,L − Mθ,S )⋅φ] ξHT/Dl.   
 
 
A.3 Model C 

 

It differs from Model A in that a new form of the orientational free energy proposed by Gránásy and 
Pusztai [33] is assumed, that sets preference for crystallographic branching with fixed misorientation: 
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The orientational free energy has two local minima as a function of the angle ξ0∇θ, corresponding 
to no misorientation and a preferred misorientation (Fig. A1). This means that regions with a large 
enough orientation difference from a neighboring parent crystal will relax towards a finite misorienta-
tion. This selection of grain orientation only occurs provided that noise does not disrupt the process. 
The branching angle and the depth of this metastable minimum of fori are specified by m, n and x. 

In any real system there will be many preferred (low energy) orientations, a reflection of the 
underlying crystallographic symmetries. In our illustrative calculations n  = ½ has been set, while m = 
1, 2, and 3 correspond to branching with 90, 45, and 30 degrees, respectively. We note that, with ap-
propriate choice of the parameters (x = 0), GFN with random orientation of the new grains [33, 99, 100, 
103, 196] can also be recovered. 

While the equations of motion for the phase field and concentration remain unchanged (only 
the actual fori has to be inserted into the former), the deterministic part of the equation of motion for 
the orientation field takes the following form 
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while ξξξ /~

00 =  is the dimensionless correlation length of the orientation field. 
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Figure A1. Orientational free energy fori in Model C, as a function of misorientation angle (in degree) for two-fold symmetry 
(k = 2), while n = ½, m = 3, and x = 0.2. If the neighboring pixel has a smaller misorientation than ~20° (local maximum), it 
can reduce the free energy by relaxing to the bulk crystal orientation (0°). If misorientation is larger than this, the closest 
minimum is 30°. So, neighboring pixels of large misorientation tend to relax to 30°, unless fluctuations prevent this. Note 
that θ is an angular variable, so the maximum possible misorientation is ∆θmax = 0.5. 
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