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Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method,
which is one of the latest simulation methodologies in materials science for problems, where
atomic- and microscales are tightly coupled. The PFC method operates on atomic length and
diffusive time scales, and thus constitutes a computationally efficient alternative to molecular
simulation methods. Its intense development in materials science started fairly recently fol-
lowing the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial
studies, dynamical density functional theory and thermodynamic concepts have been linked to
the PFC approach to serve as further theoretical fundamentals for the latter. In this review, we
summarize these methodological development steps as well as the most important applications
of the PFC method with a special focus on the interaction of development steps taken in hard
and soft matter physics, respectively. Doing so, we hope to present today’s state of the art in
PFC modelling as well as the potential, which might still arise from this method in physics and
materials science in the nearby future.
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chemistry of crystal growth, crystal morphology, and orientation; 68.08.-p Liquid–solid interfaces; 61.30.-v
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List of abbreviations

2D two spatial dimensions
3D three spatial dimensions
1M-PFC model single-mode PFC model
2M-PFC model two-mode PFC model
APFC model anisotropic PFC model
ATG instability Asaro-Tiller-Grinfeld instability
bcc crystal structure body-centred cubic crystal structure
bct crystal structure body-centred tetragonal crystal structure
BVP boundary value problem
CMA constant-mobility approximation
DDFT dynamical DFT
DFT density functional theory
DLVO potential Derjaguin-Landau-Verwey-Overbeek potential
DMD simulation diffusive MD simulation
EAP-MD simulation embedded-atom-potential MD simulation
ELE Euler-Lagrange equation
EOF-PFC model eighth-order fitting PFC model
EOM equation of motion
fcc crystal structure face-centred cubic crystal structure
FD scheme finite-difference scheme
FMT fundamental-measure theory
GRP-PFC model Greenwood-Rottler-Provatas PFC model
hcp crystal structure hexagonal close packed crystal structure
HS potential hard-sphere potential
LJ potential Lennard-Jones potential
MCT mode-coupling theory
MD simulation molecular-dynamics simulation
Model B relaxational dynamical equation for a conserved order

parameter
MPFC model modified PFC model
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NS equation Navier-Stokes equation
PFC model phase-field-crystal model
PFC1 model dynamical equation for the original PFC model without CMA
PFC2 model dynamical equation for the original PFC model with CMA
PF model phase-field model
RLV reciprocal lattice vector
sc crystal structure simple cubic crystal structure
SH model Swift-Hohenberg model
VPFC model vacancy PFC model

1. Introduction

Pattern formation has been observed in complex systems from microscopic to cosmic scales
(for examples, see Figure 1), a phenomenon that has been exciting the fantasy of humanity for
a long time. Non-equilibrium systems in physics, chemistry, biology, mathematics, cosmology,
and other fields produce an amazingly rich and visually fascinating variety of spatio-temporal
behaviour. Experiments and simulations show that many of such systems – reacting chemicals,
bacteria colonies, granular matter, plasmas – often display analogous dynamical behaviour. The
wish to find the origin of the common behaviour has been driving the efforts for finding unifying
schemes that allow the assigning of many of these processes into a few universality classes.
Pattern formation and the associated nonlinear dynamics have received a continuous attention of
the statistical physics community over the past decades. Reviews of the advances made in different
directions are available in the literature and range from early works on critical dynamics [1] via
phase-separation [2] and pattern formation in non-equilibrium systems [3,4] to recent detailed
treatments of the field in books [5–7]. In particular, Seul and Andelman [4] described pattern
formation on the mesoscale as manifestation of modulated structures. Within this approach, the
modulated phases are stabilized by competing attractive and repulsive interactions, which favour
inhomogeneities characterized by a certain modulation length scale. The modulations are described
by a single scalar order parameter. As outlined in reference [4], the idea of Seul and Andelman
can be applied to a large variety of systems ranging from Langmuir films over semiconductor
surfaces and magnet garnets to polyelectrolyte solutions. Furthermore, the pioneering theories
of spontaneous domain formation in magnetic materials and in the intermediate state of type I
superconductors has been reinterpreted within this framework.

In the past decade, special attention has been paid to a similar model, whose mathematical
formulation has been laid down decades earlier to address hydrodynamic instabilities [10] and
to describe the transition to the antiferromagnetic state in liquid 3He or to a non-uniform state
in cholesteric liquid crystals [11], whereas recently it has been employed for the modelling of
crystallization in undercooled liquids on the atomic scale [12]. This approach is known to the
materials science community as the phase-field-crystal (PFC) model [12], and has proved to be
an amazingly efficient tool for addressing crystalline self-organization/pattern formation on the
atomistic scale.

The PFC approach attracts attention owing to a unique situation: the crystallization of liquids
is traditionally addressed on this scale by the density functional theory (DFT) [13–15], whose best
developed non-perturbative version, known as the fundamental-measure theory (FMT) [16], leads
to unprecedented accuracy for such properties as the liquid–solid interfacial free energy [17,18]
or the nucleation barrier [17]. However, handling of large systems is hampered by the complexity
of such models. In turn, the PFC model, being a simplistic DFT itself, incorporates most of
the essential physics required to handle freezing: it is atomistic, anisotropies and elasticity are
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Figure 1. Pattern formation on microscopic to cosmic length scales. From left to right: multiple spiralling
nanoscale terraces starting from a central heterogeneity. (Reproduced with permission from Klemenz [8] ©
1998 by Elsevier.) Cellular slime mould self-organized into a five-arm spiral structure. (Reproduced with
permission from Vasiev et al. [9] © 1997 by the American Physical Society.) Messier 100, a multi-arm spiral
galaxy in the Virgo Supercluster, 60 million light-years from earth. (Credit: ESO/IDA/Danish 1.5 m/R.
Gendler, J.-E. Ovaldsen, C.C. Thöne, and C. Féron.)

automatically there, the system may choose from a variety of periodic states (such as body-centred
cubic (bcc), face-centred cubic (fcc), and hexagonal close packed (hcp)) besides the homogeneous
fluid, etc. The free-energy functional is fairly simple having the well-known Swift-Hohenberg (SH)
form

F̃ =
∫

dr̃

(
ψ̃

2
(−β + (k2

0 + ∇2
r̃ )2)ψ̃ + ψ̃4

4

)
, (1)

where ψ̃ is the reduced particle density and β a reduced temperature, while k0 is the absolute
value of the wave number vector the system prefers. (In Equation (1), all quantities are dimen-
sionless.) This together with the assumption of overdamped conservative (diffusive) dynamics
(a major deviation from the non-conservative dynamics of the SH model) leads to a relatively
simple equation of motion (EOM) that, in turn, allows the handling of a few times 107 atoms
on the diffusive time scale. Such abilities can be further amplified by the amplitude equation
versions [19] obtained by renormalization group theory, which combined with advanced numer-
ics [20] allows for the handling of relatively big chunks of material, while retaining all the atomic
scale physics. Such a coarse-grained PFC model, relying on equations of motion for the ampli-
tudes and phases, can be viewed as a physically motivated continuum model akin to the highly
successful and popular phase-field (PF) models [21–25], which however usually contain ad hoc
assumptions. Accordingly, the combination of the PFC model with coarse graining establishes a
link between DFT and conventional PF models, offering a way for deriving the latter on physical
grounds.

In its simplest formulation, defined above, the PFC model consists of only a single model
parameter β (provided that length is measured in k−1

0 units). Still it has a fairly complex phase
diagram in three spatial dimensions (3D), which has stability domains for the bcc, fcc, and hcp
structures, as opposed to the single triangular crystal structure appearing in two spatial dimen-
sions (2D). Introducing additional model parameters, recent extensions of the PFC model either
aim at further controlling of the predicted crystal structure or attempt to refine the description
of real materials. Other extensions address binary systems, yet others modify the dynamics
via considering further modes of density relaxation besides the diffusive one, while adopting
a free energy that ensures particle conservation and allows assigning inertia to the particles.
In a few cases, PFC models tailored to specific applications have reached the level of being
quantitative. Via the PFC models, a broad range of exciting phenomena became accessible for
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atomistic simulations (Table 1), a situation that motivates our review of the present status of PFC
modelling.

While Table 1 contains a fairly impressive list, it is expected to be only the beginning of
the model’s employment in materials science and engineering. For example, true knowledge-
based tailoring of materials via predictive PFC calculations is yet an open vision, for which a
number of difficulties need to be overcome. We are going to review a few of the most fundamental
ones of these open issues. For example, the PFC models still have to establish themselves as
widely accepted simulation tools in materials engineering/design, which requires methodological
advances in various directions such as (a) ensuring the quantitativeness of PFC predictions for
practically relevant (multi-phase multi-component) materials and (b) a consistent extension of
PFC modelling to some essential circumstances such as non-isothermal problems, coupling to
hydrodynamics, or handling of non-spherical molecules.

So far, only limited reviews of PFC modelling are available [25,71]. Therefore, we give a
comprehensive overview of PFC modelling in the present review. Especially, we present the main
achievements of PFC modelling and demonstrate the potential these models offer for address-
ing problems in physics and materials science. We pay special attention to the similarities and
differences of development steps taken in hard and soft matter physics, respectively. The rest of
our review article is structured as follows: in Section 2, we present a detailed theoretical deriva-
tion of the PFC model on the basis of dynamical density functional theory (DDFT). Section 3
is devoted to some essential features of the PFC model and its generalizations including the
realization of different crystal lattices, the predicted phase diagrams, anisotropy, and some spe-
cific issues such as glass formation, application to foams, and the possibility for coupling to
hydrodynamics. Section 4 addresses nucleation and pattern formation in metallic alloys, whereas
Section 5 deals with the application of the PFC models to prominent soft matter systems. Finally, in
Section 6, we offer a few concluding remarks and an outlook to probable developments in the near
future.

Table 1.A non-exclusive collection of phenomena addressed using PFC techniques.

Phenomena References

Liquid–solid transition:
Dendrites [26–30]
Eutectics [26,28,29,31]
Homogeneous nucleation [28,30–33]
Heterogeneous nucleation [30,31,34,35]
Grain-boundary melting [36,37]
Fractal growth [38,39]
Crystal anisotropy [33,38,40–44]
Density/solute trapping [38,39,45]
Glass formation [35,46,47]
Surface alloying [48–50]
Epitaxy/heteroepitaxy [12,26,43,48,50–53]
Surface ordering [50,54–58]

Colloid patterning [33]
Grain-boundary dynamics [59]
Crack propagation [59]
Elasticity, plasticity, dislocation dynamics [12,51,59–63]
Kirkendall effect [64]
Vacancy transport [65]
Liquid phase-separation with colloid

accumulation at phase boundaries [66]
Transitions in liquid crystals [67–69]
Formation of foams [70]
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2. From DFT to phase-field-crystal models

Freezing and crystallization phenomena are described best on the most fundamental level of
individual particles, which involves the microscopic size and interaction length scale of the
particles (Figure 2). The individual dynamics of the particles happens correspondingly on a
microscopic time scale. In the following, two different classes of materials, namely molecular
and colloidal materials, need clear distinction. The former comprise metals as well as molecu-
lar insulators and semiconductors. We consider these molecular systems as classical particles,
where the quantum-mechanical nature of the electrons merely enters via effective molecular
force fields. The corresponding molecular dynamics (MD) is governed by Newton’s second law.
Hence the length scale is atomic (about a few Angstroms) and the typical time scale is roughly a
picosecond.

The latter material class of colloidal systems involves typically mesoscopic particles immersed
in a molecular viscous fluid as a solvent that are interacting via effective forces [72]. These colloidal

Figure 2. Levels of description with the corresponding methods and theories (schematic).
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suspensions have a dimension typically in the range between a nanometre and a micrometer and are
therefore classical particles. Thus, the corresponding “microscopic” length scale describing their
extension and interaction range is much bigger than for the molecular materials. The individual
particle dynamics is Brownian motion [73,74], that is, it is completely overdamped1 superimposed
with stochastic kicks of the solvent. The corresponding coarse-grained Brownian time scale upon
which individual particle motion occurs is much longer (about a microsecond) [77].

In terms of static equilibrium properties (such as structural correlations and phase transi-
tions), both metals and colloids can just be regarded as classical interacting many-body systems.
For this purpose, DFT was developed [14,15,78]: DFT is a microscopic theory, that is, it starts
with the (effective) interparticle interactions and predicts the free energy and the static many-
body correlations. In principle, DFT is exact, but for practical applications one has to rely on
approximations.

In the past years, it has become clear that DFT is an ideal theoretical framework to justify and to
derive the free-energy functional of coarse-grained models as the PFC approach [26,53,79]. PFC
models keep the microscopic length scale, but describe the microscopically structured density field
in a very rough way, for example, by keeping only its first Fourier modes for a crystal. Although
some microscopic details are lost, the basic picture of the crystal is kept and much larger system
sizes can be explored numerically. The PFC models are superior to simple PF models, which work
with a single order parameter on a more coarse-grained regime. Finally, there are also phenomeno-
logical hydrodynamic approaches that are operating on the macroscopic length and time scale.

This pretty transparent hierarchy of length scales for static equilibrium properties gets more
complex for the dynamics. In order to discuss this in more detail, it is advantageous to start with
the colloidal systems first. Here, the individual dynamics is already dissipative and overdamped:
the “microscopic” equations governing the colloidal Brownian dynamics are either the Langevin
equation for the individual particle trajectories or the Smoluchowski equation for the time evolution
of the many-body probability density [80,81]. Both approaches are stochastically equivalent [82].
In the end of the past century, it has been shown that there is a dynamic generalization of DFT, the
DDFT, which describes the time evolution of the many-body system within the time-dependent
one-body density as a generalized deterministic diffusion equation. This provides a significant
simplification of the many-body problem. Unfortunately, DDFT is not on the same level as the
Smoluchowski or Langevin picture since an additional adiabaticity approximation is needed to
derive it. This approximation implies, that the one-body density is a slowly relaxing variable and
all higher density correlations relax much faster to thermodynamic equilibrium [83]. Fortunately,
the adiabaticity approximation is reasonable for many practical applications except for situations,
where fluctuations play a significant role. Now, DDFT can be used as an (approximate) starting
point to derive the dynamics of a PFC model systematically [79]. This also points to alternative
dynamical equations, which can be implemented within a numerically similar effort as compared
to ordinary PFC equations, but are a bit closer to DDFT.

For Newtonian dynamics, on the other hand, intense research is going on to derive a similar kind
of DDFT [84–87]. Still the diffusive (or model B) dynamics for a conserved order-parameter field
can be used as an effective dynamics on mesoscopic time scales with an effective friction. Then,
the long-time self-diffusion coefficient sets the time scale of this process. One should, however,
point out that the PFC dynamics for molecular systems is dynamically more coarse-grained than
for their colloidal counterparts.

2.1. Density functional theory

DFT is a microscopic theory for inhomogeneous complex fluids in equilibrium [14,15,78,88] that
needs only the particle interactions and the underlying thermodynamic conditions as an input.
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The central idea is to express the free energy of the many-body system as a functional of the
inhomogeneous one-body density. As it stands originally, DFT is a theory for static quantities.
Most of the actual applications of DFT are for spherically symmetric pairwise interactions between
classical particles (mostly hard spheres) [14,78,89], but they can also be generalized to anisotropic
interactions (as relevant to non-spherical hard bodies or molecules) [90–93]. One of the key
applications of DFT concerns the equilibrium freezing and melting [14,15,94,95] including the
fluid–solid interface [96–99]. Further information about DFT and a detailed historic overview can
be found in several articles and books like references [96,100–103].

More recently, static DFT was generalized towards time-dependent processes in non-
equilibrium. The extended approach is called DDFT. DDFT was first derived in 1999 for isotropic
Brownian particles by Marconi and Tarazona [104,105] starting from the Langevin picture of
individual particle trajectories. An alternate derivation based on the Smoluchowski picture was
presented in 2004 by Archer and Evans [106]. In both schemes, an additional adiabaticity approx-
imation is needed: correlations of high order in non-equilibrium are approximated by those in
equilibrium for the same one-body density. These derivations were complemented by a further
approach on the basis of a projection operator technique [83]. The latter approach sheds some light
on the adiabaticity approximation: it can be viewed by the assumption that the one-body density
relaxes much slower than any other density correlations of higher order. DDFT can be flexibly
generalized towards more complex situations including mixtures [107], active particles [108],
hydrodynamic interactions [109,110], shear flow [111], and non-spherical particles [112,113].
However, as already stated above, it is much more difficult to derive a DDFT for Newtonian
dynamics, where inertia and flow effects invoke a treatment of the momentum density field of the
particles [84–87].

In detail, DFT gives access to the free energy for a system of N classical particles, whose centre-
of-mass positions are defined through the vectors ri with i ∈ {1, . . . , N}, by the one-particle density
ρ(r), which provides the probability to find a particle at position r. Its microscopic definition is

ρ(r) =
〈

N∑
i=1

δ(r − ri)

〉
(2)

with the normalized classical canonical (or grand canonical) ensemble-average 〈·〉. At given tem-
perature T and chemical potential μ, the particles are interacting via a pairwise (two-body)
potential U2(r1 − r2). Furthermore, the system is exposed to an external (one-body) potential
U1(r) (describing, for example, gravity or system boundaries), which gives rise in general to an
inhomogeneous one-particle density ρ(r). DFT is based on the following variational theorem:

There exists a unique grand canonical free-energy functional �(T , μ, [ρ(r)]) of the one-particle density
ρ(r), which becomes minimal for the equilibrium one-particle density ρ(r):

δ�(T , μ, [ρ(r)])
δρ(r)

= 0 . (3)

If the grand canonical functional �(T , μ, [ρ(r)]) is evaluated at the equilibrium one-particle density
ρ(r), it is the real equilibrium grand canonical free energy of the inhomogeneous system.

Hence, DFT establishes a basis for the determination of the equilibrium one-particle density field
ρ(r) of an arbitrary classical many-body system. However, in practice, the exact form of the grand
canonical free-energy density functional �(T , μ, [ρ(r)]) is not known and one has to rely on
approximations. Via a Legendre transform, the grand canonical functional can be expressed by an
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equivalent Helmholtz free-energy functional F(T , [ρ(r)]),

�(T , μ, [ρ(r)]) = F(T , [ρ(r)]) − μ

∫
dr ρ(r) , (4)

with V denoting the system volume. The latter is conveniently split into three contributions:

F(T , [ρ(r)]) = Fid(T , [ρ(r)]) + Fexc(T , [ρ(r)]) + Fext(T , [ρ(r)]) . (5)

Here, Fid(T , [ρ(r)]) is the (exact) ideal gas free-energy functional [78]

Fid(T , [ρ(r)]) = kBT
∫

dr ρ(r)(ln(�3ρ(r)) − 1) , (6)

where kB is the Boltzmann constant and � the thermal de Broglie wavelength. The second term on
the right-hand-side of Equation (5) is the excess free-energy functional Fexc(T , [ρ(r)]) describing
the excess free energy over the exactly known ideal-gas functional. It incorporates all correlations
due to the pair interactions between the particles. In general, it is not known explicitly and therefore
needs to be approximated appropriately [14,78]. The last contribution is the external free-energy
functional [78]

Fext(T , [ρ(r)]) =
∫

dr ρ(r)U1(r) . (7)

A formally exact expression for Fexc(T , [ρ(r)]) is gained by a functional Taylor expansion in the
density variations �ρ(r) = ρ(r) − ρref around a homogeneous reference density ρref [78,94]:

Fexc(T , [ρ(r)]) = F (0)
exc(ρref) + kBT

∞∑
n=1

1

n!F
(n)
exc(T , [ρ(r)]) (8)

with

F (n)
exc(T , [ρ(r)]) = −

∫
dr1 · · ·

∫
drn c(n)(r1, . . . , rn)

n∏
i=1

�ρ(ri) . (9)

Here, c(n)(r1, . . . , rn) denotes the nth-order direct correlation function [101] in the homogeneous
reference state given by

c(n)(r1, . . . , rn) = − 1

kBT

δnFexc(T , [ρ(r)])
δρ(r1) · · · δρ(rn)

∣∣∣∣
ρref

(10)

depending parametrically on T and ρref .
In the functional Taylor expansion (8), the constant zeroth-order contribution is irrelevant and

the first-order contribution corresponding to n = 1 is zero.2 The higher-order terms are non-local
and do not vanish in general.

In the simplest non-trivial approach, the functional Taylor expansion is truncated at second
order. The resulting approximation is known as the Ramakrishnan–Yussouff theory [94]

Fexc(T , [ρ(r)]) = −1

2
kBT

∫
dr1

∫
dr2 c(2)(r1 − r2)�ρ(r1)�ρ(r2) (11)

and predicts the freezing transition of hard spheres both in 3D [94] and 2D [114].3

The Ramakrishnan–Yussouff approximation needs the fluid direct pair-correlation function
c(2)(r1 − r2) as an input. For example, c(2)(r1 − r2) can be gained from liquid integral equation
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theory, which links c(2)(r1 − r2) to the pair-interaction potential U2(r1 − r2). Well-known ana-
lytic approximations for the direct pair-correlation function include the second-order virial
expression [118]

c(2)(r1 − r2) = exp

(
−U2(r1 − r2)

kBT

)
− 1 . (12)

The resulting Onsager functional for the excess free energy becomes asymptotically exact in the
low density limit [101]. An alternative is the random-phase or mean-field approximation

c(2)(r1 − r2) = −U2(r1 − r2)

kBT
. (13)

For bounded potentials, this mean-field approximation becomes asymptotically exact at high
densities [112,119–121]. Non-perturbative expressions for the excess free-energy functional for
colloidal particles are given by weighted-density approximations [90,93,96,122,123] or follow
from FMT [91,124]. FMT was originally introduced in 1989 by Rosenfeld for isotropic parti-
cles [16,95,100,125] and then refined later [89,126] – for a review, see reference [88]. For hard
spheres, FMT provides an excellent approximation for the excess free-energy functional with an
unprecedented accuracy. It was also generalized to arbitrarily shaped particles [91,124,127].

2.2. Dynamical density functional theory

2.2.1. Basic equations

DDFT is the time-dependent analogue of static DFT and can be classified as linear-response
theory. In its basic form, it describes the slow dissipative non-equilibrium relaxation dynamics
of a system of N Brownian particles close to thermodynamic equilibrium or the behaviour in
a time-dependent external potential U1(r, t). Now a time-dependent one-particle density field is
defined via

ρ(r, t) =
〈

N∑
i=1

δ(r − ri(t))

〉
, (14)

where 〈·〉 denotes the normalized classical canonical noise-average over the particle trajectories
and t is the time variable.

This one-particle density is conserved and its dynamics is assumed to be dissipative via the
generalized (deterministic) diffusion equation

∂ρ(r, t)

∂t
= DT

kBT
∇r ·

(
ρ(r, t)∇r

δF(T , [ρ(r, t)])
δρ(r, t)

)
. (15)

Here, DT denotes a (short-time) translational diffusion coefficient for the Brownian system. Refer-
ring to Equations (3) and (4), the functional derivative in the DDFT equation can be interpreted
as an inhomogeneous chemical potential

μ(r, t) = δF(T , [ρ(r, t)])
δρ(r, t)

(16)

such that the DDFT equation (15) corresponds to a generalized Fick’s law of particle diffusion.
As already mentioned, DDFT was originally invented [104,106] for colloidal particles, which
exhibit Brownian motion, but is less justified for metals and atomic systems whose dynamics are
ballistic [84,85].
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2.2.2. Brownian dynamics: Langevin and Smoluchowski picture

The DDFT equation (15) can be derived [104] from Langevin equations that describe the stochas-
tic motion of the N isotropic colloidal particles in an incompressible liquid of viscosity η at low
Reynolds number (Stokes limit). In the absence of hydrodynamic interactions between the Brow-
nian particles, these coupled Langevin equations for the positions ri(t) of the colloidal spheres
with radius Rs describe completely overdamped motion plus stochastic noise [80,82]:

ṙi = ξ−1(Fi + fi) , i = 1, . . . , N . (17)

Here, ξ is the Stokesian friction coefficient (ξ = 6πηRs for spheres of radius Rs with stick boundary
conditions) and

Fi(t) = −∇ri U(r1, . . . , rN , t) (18)

are the deterministic forces caused by the total potential

U(r1, . . . , rN , t) = Uext(r1, . . . , rN , t) + Uint(r1, . . . , rN ) (19)

with

Uext(r1, . . . , rN , t) =
N∑

i=1

U1(ri, t) (20)

and

Uint(r1, . . . , rN ) =
N∑

i,j=1
i<j

U2(ri − rj) . (21)

On top of these deterministic forces, also stochastic forces fi(t) due to thermal fluctuations act
on the Brownian particles. These random forces are modelled by Gaussian white noises with
vanishing mean values

〈fi(t)〉 = 0 (22)

and with Markovian second moments

〈fi(t1) ⊗ fj(t2)〉 = 2ξkBT1δijδ(t1 − t2) , (23)

where ⊗ is the ordinary (dyadic) tensor product (to make the notation compact) and 1
denotes the 3 × 3-dimensional unit matrix. This modelling of the stochastic forces is dictated
by the fluctuation-dissipation theorem, which for spheres yields the Stokes–Einstein relation
DT = kBT/ξ [73], that couples the short-time diffusion coefficient DT of the colloidal particles to
the Stokes friction coefficient ξ .

An alternate description of Brownian dynamics is provided by the Smoluchowski picture,
which is stochastically equivalent to the Langevin picture [81,82]. The central quantity in the
Smoluchowski picture is the N-particle probability density P(r1, . . . , rN , t) whose time evolution
is described by the Smoluchowski equation [82,128]

∂

∂t
P(r1, . . . , rN , t) = L̂ P(r1, . . . , rN , t) (24)

with the Smoluchowski operator

L̂ = DT

N∑
i=1

∇ri ·
(

∇ri

U(r1, . . . , rN , t)

kBT
+ ∇ri

)
. (25)

While the N-particle probability density P(r1, . . . , rN , t) in this Smoluchowski equation is a highly
non-trivial function for interacting particles, it is often sufficient to consider one-body or two-body
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densities. The one-particle probability density P(r, t) is proportional to the one-particle number
density ρ(r, t). In general, all n-particle densities with n � N can be obtained from the N-particle
probability density P(r1, . . . , rN , t) by integration over the remaining degrees of freedom:

ρ(n)(r1, . . . , rn, t) = N !
(N − n)!

∫
drn+1 · · ·

∫
drN P(r1, . . . , rN , t) . (26)

2.2.3. Derivation of DDFT

We now sketch how to derive the DDFT equation (15) from the Smoluchowski picture following
the idea of Archer and Evans [106]. Integrating the Smoluchowski equation (24) over the positions
of N − 1 particles yields the exact equation

ρ̇(r, t) = DT∇r ·
(

∇rρ(r, t) − F̄(r, t)

kBT
+ ρ(r, t)

kBT
∇rU1(r, t)

)
(27)

for the one-particle density ρ(r, t), where

F̄(r, t) = −
∫

dr′ρ(2)(r, r′, t)∇rU2(r − r′) (28)

is an average force, that in turn depends on the non-equilibrium two-particle density ρ(2)(r1, r2, t).
This quantity is approximated by an equilibrium expression. To derive this expression, we consider
first the equilibrium state of Equation (27). This leads to

F̄(r) = kBT∇rρ(r) + ρ(r)∇rŪ1(r) , (29)

which is the first equation of theYvon-Born-Green hierarchy, with a “substitute” external potential
Ū1(r). In equilibrium, DFT implies

0 = δ�(T , μ, [ρ(r)])
δρ(r)

= δF(T , [ρ(r)])
δρ(r)

− μ

= kBT ln(�3ρ(r)) + δFexc(T , [ρ(r)])
δρ(r)

+ Ū1(r) (30)

and after application of the gradient operator

0 = kBT
∇rρ(r)
ρ(r)

+ ∇r
δFexc(T , [ρ(r)])

δρ(r)
+ ∇rŪ1(r) . (31)

A comparison of Equations (29) and (31) yields

F̄(r) = −ρ(r)∇r
δFexc(T , [ρ(r)])

δρ(r)
. (32)

It is postulated, that this relation also holds in non-equilibrium. The non-equilibrium correlations
are thus approximated by equilibrium ones at the same ρ(r) via a suitable “substitute” equilibrium
potential Ū1(r). With this adiabatic approximation, Equation (27) becomes

ρ̇(r, t) = DT∇r ·
(

∇rρ(r, t) + ρ(r)
kBT

∇r
δFexc(T , [ρ(r)])

δρ(r)
+ ρ(r, t)

kBT
∇rU1(r, t)

)
, (33)

which is the DDFT equation (15).
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It is important to note that the DDFT equation (15) is a deterministic equation, that is, there
are no additional noise terms. If noise is added, there would be double counted fluctuations in
the equilibrium limit of Equation (15) since F(T , [ρ]) is the exact equilibrium functional, which
in principle includes all fluctuations.4 The drawback of the adiabatic approximation, on the other
hand, is that a system is trapped for ever in a metastable state. This unphysical behaviour can be
changed by adding noise on a phenomenological level though violating the caveat noted above.
A pragmatic recipe is to add noise only when fluctuations are needed to push the system out of a
metastable state or to regard a fluctuating density field as an initial density profile for subsequent
deterministic time evolution via DDFT. In conclusion, the drawback of the adiabatic approximation
is that DDFT is some kind of mean-field theory. For example, DDFT as such is unable to predict
nucleation rates. It is rather a realistic theory, if a systematic drive pushes the system, as occurs,
for example, for crystal growth.

2.2.4. Application of DDFT to colloidal crystal growth

An important application of DDFT is the description of colloidal crystal growth. In reference [129],
DDFT was applied to two-dimensional dipoles, whose dipole moments are perpendicular
to a confining plane. These dipoles interact with a repulsive inverse power-law potential
U2(r) = u0r−3, where r = |r| is the inter-particle distance. This model can be realized, for exam-
ple, by superparamagnetic colloids at a water-surface in an external magnetic field [130]. Figures 3
and 4 show DDFT results from reference [129].

In Figure 3, the time evolution of the one-particle density of an initial colloidal cluster of 19
particles arranged in a hexagonal lattice is shown. This prescribed cluster is surrounded by an
undercooled fluid and can act as a nucleation seed, if its lattice constant is chosen appropriately.
The initial cluster either initiates crystal growth (left column in Figure 3) or the system relaxes
back to the undercooled fluid (right column).

A similar investigation is also possible for other initial configurations like rows of seed particles.
Figure 4 shows the crystallization process starting with six infinitely long particle rows of a
hexagonal crystal, where a gap separates the first three rows from the remaining three rows. If this
gap is not too big, the density peaks rearrange and a growing crystal front emerges.

2.3. Derivation of the PFC model for isotropic particles from DFT

Though approximate in practice, DFT and DDFT can be regarded to be a high level of microscopic
description, which provides a framework to calibrate the more coarse-grained PFC approach. In
this section, we at first describe the derivation for spherical interactions in detail and then focus
more on anisotropic particles. There are two different aspects of the PFC modelling, which can
be justified from DFT, respectively, DDFT, namely statics and dynamics. The static free energy
used in the PFC model was first derived from DFT by Elder et al. [26], while the corresponding
dynamics was derived from DDFT by van Teeffelen et al. [79]. We follow the basic ideas of these
works in the sequel.

2.3.1. Free-energy functional

For the static part, we first of all define a scalar dimensionless order-parameter field ψ(r)5 by the
relative density deviation

ρ(r) = ρref(1 + ψ(r)) (34)

around the prescribed fluid reference density ρref . This relative density deviation ψ(r) is consid-
ered to be small, |ψ(r)| 	 1, and slowly varying in space (on the microscale). The basic steps to
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Figure 3. Crystallization starting at a colloidal cluster. The plots show DDFT results for the time-dependent
density field. Aρref = 0.7 (left column) and Aρref = 0.6 (right column) at times t/τB = 0, 0.001, 0.1, 1 (from
top to bottom) with the area A of a unit cell of the imposed crystalline seed, the Brownian time τB, and
the lattice constant a = (2/(

√
3ρref ))

1/2. For Aρref = 0.7, the cluster is compressed in comparison to the
stable bulk crystal, but there is still crystal growth possible. The initial nucleus first melts, but then an inner
crystalline nucleus is formed (third panel from the top), which acts as a seed for further crystal growth.
For Aρref = 0.6, the compression is too high and the initial nucleus melts. (Reproduced from van Teeffelen
et al. [129] © 2008 by the American Physical Society.)

derive the PFC free energy are threefold: (i) insert the parametrization (34) into the (microscopic)
free-energy functional (5), (ii) Taylor-expand systematically in terms of powers of ψ(r), (iii)
perform a gradient expansion [78,97,131–133] of ψ(r). Consistent with the assumption that den-
sity deviations are small, the Ramakrishnan–Yussouff approximation (11) is used as a convenient
approximation for the free-energy functional.

For the local ideal gas free-energy functional (6) this yields6

Fid[ψ(r)] = F0 + ρrefkBT
∫

dr
(

ψ + ψ2

2
− ψ3

6
+ ψ4

12

)
(35)

with the irrelevant constant F0 = ρrefVkBT(ln(�3ρref) − 1). The Taylor expansion is performed
up to the fourth order, since this is the lowest order which enables the formation of stable crystalline
phases. The non-local Ramakrishnan–Yussouff approximation (11) for the approximation of the
excess free-energy functional Fexc[ψ(r)] is gradient-expanded to make it local. For this purpose,
it is important to note that – in the fluid bulk reference state – the direct pair-correlation function
c(2)(r1 − r2) entering into the Ramakrishnan–Yussouff theory has the same symmetry as the
interparticle interaction potential U2(r1 − r2). For radially symmetric interactions (i.e. spherical
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Figure 4. Crystallization starting at two triple-rows of hexagonally crystalline particles that are separated by
a gap. The contour plots show the density field of a growing crystal at times t/τB = 0, 0.01, 0.1, 0.63, 1 (from
top to bottom). (Reproduced from van Teeffelen et al. [129] © 2008 by the American Physical Society.)

particles), there is both translational and rotational invariance implying

c(2)(r1, r2) ≡ c(2)(r1 − r2) ≡ c(2)(r) (36)

with the relative distance r = |r1 − r2|. Then, as a consequence of Equation (36), the
Ramakrishnan–Yussouff approximation is a convolution integral. Consequently, a Taylor expan-
sion of the Fourier transform c̃(2)(k) of the direct correlation function in Fourier space (around
the wave vector k = 0)

c̃(2)(k) = c̃(2)
0 + c̃(2)

2 k2 + c̃(2)
4 k4 + · · · (37)

with expansion coefficients c̃(2)
i becomes a gradient expansion in real space

c(2)(r) = c(2)
0 − c(2)

2 ∇2
r + c(2)

4 ∇4
r ∓ · · · (38)

with the gradient expansion coefficients c(2)
i . Clearly, gradients of odd order vanish due to parity

inversion symmetry c(2)(−r) = c(2)(r) of the direct pair-correlation function.
The gradient expansion up to the fourth order is the lowest one that makes stable periodic

density fields possible. We finally obtain

Fexc[ψ(r)] = Fexc − ρref

2
kBT

∫
dr (A1ψ

2 + A2ψ∇2
r ψ + A3ψ∇4

r ψ) (39)

with the irrelevant constant Fexc = F (0)
exc(ρref) and the coefficients

A1 = 4πρref

∫ ∞

0
dr r2c(2)(r) , A2 = 2

3
πρref

∫ ∞

0
dr r4c(2)(r) , A3 = πρref

30

∫ ∞

0
dr r6c(2)(r)

(40)
that are moments of the fluid direct correlation function c(2)(r).
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Finally, the external free-energy functional (7) can be written as

Fext[ψ(r)] = Fext + ρref

∫
dr ψ(r)U1(r) (41)

with the irrelevant constant Fext = ρref
∫

dr U1(r). We add as a comment here that this external
part is typically neglected in most of the PFC calculations. Altogether, we obtain

F[ψ(r)] = ρref kBT
∫

dr
(

A′
1ψ

2 + A′
2ψ∇2

r ψ + A′
3ψ∇4

r ψ − ψ3

6
+ ψ4

12

)
(42)

for the total Helmholtz free-energy functional and the scaled coefficients

A′
1 = 1

2 (1 − A1) , A′
2 = − 1

2 A2 , A′
3 = − 1

2 A3 (43)

are used for abbreviation, where the coefficient A′
2 should be positive in order to favour non-

uniform phases and the last coefficient A′
3 is assumed to be positive for stability reasons. By

comparison of Equation (42) with the original PFC model (1), that was initially proposed on the
basis of general symmetry considerations in reference [12], analytic expressions can be assigned
to the unknown coefficients in the original PFC model: when we write the order-parameter field
in Equation (1) as ψ̃(r) = α(1 − 2ψ(r)) with a constant α and neglect constant contributions as
well as terms linear in ψ(r) in the free-energy density, we obtain the relations

α = 1√
24A′

3

, F̃ = 1

12ρref kBTA′2
3

F , β = 1

8A′
3

− A′
1

A′
3

+ A′2
2

4A′2
3

, k0 =
√

A′
2

2A′
3

(44)

between the coefficients in Equations (1) and (42).7

2.3.2. Dynamical equations

We turn to the dynamics of the PFC model and derive it here from DDFT. Inserting the repre-
sentation (34) for the one-particle density field into the DDFT equation (15), we obtain for the
dynamical evolution of the order-parameter field ψ(r, t)

∂ψ(r, t)

∂t
= DT∇r ·

(
(1 + ψ)∇r

(
2A′

1ψ + 2A′
2∇2

r ψ + 2A′
3∇4

r ψ − ψ2

2
+ ψ3

3

))
. (45)

This dynamical equation (called PFC1 model in reference [79]) still differs from the original
dynamical equation of the PFC model. The latter can be gained by a further constant-mobility
approximation (CMA), where the space- and time-dependent mobility DTρ(r, t) in the DDFT
equation is replaced by the constant mobility DTρref . The resulting dynamical equation (called
PFC2 model in reference [79]) coincides with the original PFC dynamics given by

∂ψ(r, t)

∂t
= DT∇2

r

(
2A′

1ψ + 2A′
2∇2

r ψ + 2A′
3∇4

r ψ − ψ2

2
+ ψ3

3

)
(46)

for the time-dependent translational density ψ(r, t). We remark that this dynamical equation
can also be derived from an equivalent dissipation functional R known from linear irreversible
thermodynamics [135–137]. A further transformation of this equation to the standard form of the
dynamic PFC model will be established in Section 3.1.1.
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2.3.3. Colloidal crystal growth: DDFT versus PFC modelling

Results of the PFC1 model, the PFC2 model, and DDFT are compared for colloidal crystal growth
in reference [79]. Figures 5–7 show the differences for the example of a growing crystal front
starting at the edge of a prescribed hexagonal crystal. The underlying colloidal systems are the
same as in Section 2.2.4. In Figure 5, the time evolution of the one-particle density is shown for
DDFT and for the PFC1 model. The PFC2 model leads to results very similar to those for the
PFC1 model and is therefore not included in this figure.

Two main differences in the results of DDFT and of the PFC1 model are obvious: first, the
density peaks are much higher and narrower in the DDFT results than for the PFC1 model. While
these peaks can be approximated by Gaussians in the case of DDFT, they are much broader

Figure 5. Colloidal crystal growth within DDFT (upper panel) and the PFC1 model (lower panel). The crys-
tallization starts with an initial nucleus of 5 and 11 rows of hexagonally crystalline particles, respectively. The
density field of the growing crystal is shown at times t/τB = 0, 0.5, 1, 1.5. (Reproduced from van Teeffelen
et al. [79] © 2009 by the American Physical Society.)

Figure 6. Comparison of DDFT (upper panel) and PFC1 (lower panel) results. For an analogous situation
as in Figure 5, this plot shows the laterally averaged density ρx2 (x1, t) = 〈ρ(r, t)〉x2 at t = τB. (Reproduced
from van Teeffelen et al. [79] © 2009 by the American Physical Society.)
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Figure 7. Comparison of DDFT, the PFC1 model, and the PFC2 model [79]. The plot shows the velocity vf
of a crystallization front in the (11)-direction in dependence of the relative coupling constant �� = � − �f
with the total coupling constant � and the coupling constant of freezing �f . In the inset, the velocity vf is
shown in dependence of �. (Reproduced from van Teeffelen et al. [79] © 2009 by the American Physical
Society.)

sinusoidal modulations for the PFC1 model. Second, also the width of the crystal front obtained
within DDFT is considerably smaller than in the PFC approach.

These qualitative differences can also be observed in Figure 6. There, the laterally averaged
density ρx2(x1, t) = 〈ρ(r, t)〉x2 associated with the plots in Figure 5 is shown, where 〈·〉x2 denotes
an average with respect to x2. A further comparison of DDFT and the PFC approaches is possible
with respect to the velocity vf of the crystallization front. The corresponding results are shown in
Figure 7 in dependence of the total coupling constant � = u0v3/2/(kBT) and the relative coupling
constant �� = � − �f , where �f denotes the coupling constant of freezing. Due to the power-law
potential of the considered colloidal particles, their behaviour is completely characterized by the
dimensionless coupling parameter �. When plotted versus ��, the growth velocity of the PFC1
model is in slightly better agreement than that of the PFC2 model.

3. Phase-field-crystal modelling in condensed matter physics

The original PFC model has the advantage over most other microscopic techniques, such as MD
simulations, that the time evolution of the system can be studied on the diffusive time scale making
the long-time behaviour and the large-scale structures accessible [12,59]. As already outlined in
Section 2.2, we note that the diffusion-controlled relaxation dynamics the original PFC model
assumes is relevant for micron-scale colloidal particles in carrier fluid [79,129], where the self-
diffusion of the particles is expected to be the dominant way of the density relaxation. For normal
liquids, the hydrodynamic mode of density relaxation is expected to dominate. The modified PFC
(MPFC) model introduces linearized hydrodynamics, realized via incorporating a term propor-
tional to the second time derivative of the particle density into the EOM [61,138], yielding a
two-time-scale density relaxation: a fast acoustic process in addition to the long-time diffusive
relaxation of the original PFC model. A three-time-scale extension incorporates phonons into the
PFC model [139,140]. Another interesting group of models have been obtained by coarse-graining
the PFC approaches [19,20,141], leading to equations of motion that describe the spatio-temporal
evolution of the Fourier amplitudes and the respective phase information characterizing the particle
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density field. Combined with adaptive grid schemes, the amplitude equation models are expected
to become a numerically especially efficient class of the PFC models of crystallization [20].

Finally, we address here recent advances in the modelling of molecules or liquid crystalline
systems, which are composed of anisotropic particles. There is a large number of molecular and
colloidal realizations of these non-spherical particles. The simplest non-spherical shape is rotation-
ally symmetric about a certain axis (like rods, platelets, and dumbbells) and is solely described by
an additional orientation vector. Liquid crystalline systems show an intricate freezing behaviour in
equilibrium, where mesophases occur, that can possess both orientational and translational order-
ing. Here, we show that the microscopic DFT approach for liquid crystals provides an excellent
starting point to derive PFC-type models for liquid crystals. This gives access to the phase diagram
of liquid crystalline phases and to their dynamics promising a flourishing future to predict many
fundamentally important processes on the microscopic level.

3.1. The original PFC model and its generalizations

The original PFC model has several equivalent formulations and extensions that we review in this
section. We first address the single-component PFC models. Then, an overview of their binary
generalizations will be given. In both cases, complementing Section 2, we start with presenting
different forms of the free-energy functional, followed by a summary of specific forms of the EOM
and of the Euler–Lagrange equation (ELE). Finally, we review the numerical methods applied for
solving the EOM and ELE as well as various approaches for the amplitude equations.

3.1.1. Single-component PFC models

3.1.1.1 The free energy. The single-mode PFC model: The earliest formulation of the single-
mode PFC (1M-PFC) model [12,59] has been derived as a SH model with conserved dynamics to
incorporate mass conservation. Accordingly, the dimensionless free energy of the heterogeneous
system is given by the usual SH expression (1). We note that in Equations (1) and (8) the analogous
quantities differ by only appropriate numerical factors originating from the difference in the length
scales.

As already outlined in Section 2.3, the free energy of the earliest and simplest PFC model [12]
has been re-derived [26] from that of the perturbative DFT of Ramakrishnan and Yussouff [94],
in which the free-energy difference �F = F − F̄8 of the crystal relative to a reference liquid of
particle density ρref and free energy F̄ is expanded with respect to the local density difference
�ρ(r) = ρ(r) − ρref , while retaining the terms up to the two-particle term (Section 2.3.1):

F
kBT

=
∫

dr
(

ρ ln

(
ρ

ρref

)
− �ρ

)
− 1

2

∫
dr1

∫
dr2 �ρ(r1)c

(2)(r1, r2)�ρ(r2) + · · · (47)

Fourier expanding the particle density, one finds that for the solid ρs = ρref(1 + ηs +∑
K AK exp(iK · r)), where ηs is the fractional density change upon freezing, while K are recip-

rocal lattice vectors (RLVs) and AK the respective Fourier amplitudes. Introducing the reduced
number density ψ = (ρ − ρref)/ρref = ηs + ∑

K AK exp(iK · r) one obtains

F
ρref kBT

=
∫

dr ((1 + ψ) ln(1 + ψ) − ψ)

− ρref

2

∫
dr1

∫
dr2 ψ(r1)c

(2)(|r1 − r2|)ψ(r2) + · · · (48)

Expanding next c(2)(|r1 − r2|) in Fourier space, c̃(2)(k) ≈ c̃(2)
0 + c̃(2)

2 k2 + c̃(2)
4 k4 + · · · , where

c̃(2)(k) has its first peak at k = 2π/Rp, the signs of the coefficients alternate. (Here, Rp is the



Advances in Physics 685

interparticle distance.) Introducing the dimensionless two-particle direct correlation function
c(k) = ρref c̃(2)(k) ≈ ∑m

j=0 c2jk2j = ∑m
j=0 b2j(kRp)

2j, which is related to the structure factor as
S(k) = 1/(1 − c(k)), and integrating the second term on the right-hand-side of Equation (48)
with respect to r2 and finally replacing r1 by r, the free-energy difference can be rewritten as

F
ρref kBT

≈
∫

dr

⎛
⎝(1 + ψ) ln(1 + ψ) − ψ − ψ

2

⎛
⎝ m∑

j=0

(−1)jc2j∇2j
r

⎞
⎠ ψ

⎞
⎠ . (49)

The reference liquid is not necessarily the initial liquid. Thus, we have here two parameters to
control the driving force for solidification: the initial liquid number density ρ0 (corresponding to
a reduced initial density of ψ0) and the temperature T , if the direct correlation function depends
on temperature. Taylor-expanding ln(1 + ψ) for small ψ one obtains

F
ρref kBT

≈
∫

dr

⎛
⎝ψ2

2
− ψ3

6
+ ψ4

12
− ψ

2

⎛
⎝ m∑

j=0

(−1)jc2j∇2j
r

⎞
⎠ ψ

⎞
⎠ . (50)

For m = 2, corresponding to the earliest version of the PFC model [12], and taking the alternating
sign of the expansion coefficients of c̃(2)

i into account, Equation (49) transforms to the following
form:

F
ρref kBT

≈
∫

dr
(

ψ2

2
(1 + |b0|) + ψ

2
(|b2|R2

p∇2
r + |b4|R4

p∇4
r )ψ − ψ3

6
+ ψ4

12

)
. (51)

Introducing the new variables

Bl = 1 + |b0| = 1 − c0 [= (1/κ)/(ρref kBT), where κ is the compressibility],
Bs = |b2|2/(4|b4|) [= K/(ρref kBT), where K is the bulk modulus],
R = Rp(2|b4|/|b2|)1/2 [= the new length scale (x = Rx̃), which is now related to the

position of the maximum of the Taylor expanded c̃(2)(k)] ,

and a multiplier v for the ψ3-term (that accounts for the zeroth-order contribution from three-
particle correlations), one obtains the form used by Berry et al. [36,46]:

F =
∫

dr f [ψ] = ρref kBT
∫

dr
(

ψ

2
(Bl + Bs(2R2∇2

r + R4∇4
r ))ψ − v

ψ3

6
+ ψ4

12

)
. (52)

Here, f [ψ] denotes the full (dimensional) free-energy density. Note that the inclusion of the coef-
ficient v into Equation (52) (and another coefficient for the fourth-order term) has been discussed
in references [44,53,142,143]. Higher-order correlation functions are expected to contribute to
these coefficients.

The SH-type dimensionless form: Introducing a new set of variables, x = Rx̃, ψ = (3Bs)
1/2ψ̃ ,

F = (3ρref kBTRdB2
s )F̃ , where d is the number of spatial dimensions, the free energy can be

transcribed into the following dimensionless form:

F̃ =
∫

dr̃

(
ψ̃

2
(−ε + (1 + ∇2

r̃ )2)ψ̃ + p
ψ̃3

3
+ ψ̃4

4

)
. (53)

Here, p = −(v/2)(3/Bs)
1/2 = −v(3|b4|/|b2|2)1/2 and ε = −�B/Bs = −((1 + |b0|)/(|b2|2/

(4|b4|)) − 1), while ψ̃ = ψ/(3Bs)
1/2. The quantities involved in Equation (53) are all dimen-

sionless. Using the appropriate length unit, this expression becomes equivalent to Equation (1)
for p = 0.
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Equation (53) suggests that the m = 2 PFC model contains only two dimensionless similarity
parameters, ε and p, composed of the original model parameters. We note finally that even the
third-order term can be eliminated. In the respective p′ = 0 SH model (1), the state (ε′ = ε + p2/3,
ψ ′ = ψ̃ + p/3) corresponds to the state (ε, ψ̃) of the original p �= 0 model. This transforma-
tion leaves the grand canonical potential difference, the ELE (Section 3.1.1.3), and the EOM
(Section 3.1.1.2.) invariant. Accordingly, it is sufficient to address the case p = 0.

We stress here that in these models, the approximation for the two-particle direct correlation
function leads to a well- defined wavelength of the density waves the system tends to realize (hence
the name “single-mode PFC” (1M-PFC) model). Accordingly, any periodic density distribution
that honours this wavelength represents a local minimum of the free energy. Indeed, the 1M-PFC
model has stability domains for the bcc, fcc, and hcp structures (Section 3.1.1.1). Furthermore,
elasticity and crystal anisotropies are automatically present in the model. Model parameters of the
SH formulation have been deduced to fit into the properties of bcc Fe by Wu and Karma [40].

The two-mode PFC model: An attempt has been made to formulate a free energy that prefers
the fcc structure at small ε values [144], where a linear elastic behaviour persists. To achieve this,
two well defined wavelengths were used (first and second neighbour RLVs), hence the name “two-
mode PFC” (2M-PFC) model. The respective free-energy functional contains two new parameters:

F̃ =
∫

dr̃

(
ψ̃

2

(−ε + (1 + ∇2
r̃ )2(R1 + (k2

rel + ∇2
r̃ )2)

)
ψ̃ + ψ̃4

4

)
. (54)

Here, R1 controls the relative stability of the fcc and bcc structures, while krel is the ratio of the
two wave numbers (krel = 2/

√
3 for fcc, using the (111) and (200) RLVs). Remarkably, the 1M-

PFC model can be recovered for R1 → ∞. Model parameters have been deduced to fit into the
properties of fcc Fe by Wu and Karma [144].

We note finally that the 1M-PFC and 2M-PFC models can be cast into a form that interpolates
between them by varying a single parameter λ = R1/(1 + R1) ∈ [0, 1] as follows [35]:

F̃ =
∫

dr̃

(
ψ̃

2

(−ε + (1 + ∇2
r̃ )2(λ + (1 − λ)(k2

rel + ∇2
r̃ )2)

)
ψ̃ + ψ̃4

4

)
. (55)

This expression recovers the 1M-PFC model limit for λ = 1 (R1 → ∞).
The eighth-order fitting PFC model: To approximate real bcc materials better, an eighth-

order expansion of the Fourier transform of the direct correlation function around its maximum
(k = km) has been performed recently, leading to what is termed the eighth-order fitting version
of the phase-field-crystal (EOF-PFC) model [142]:

c̃(2)(k) ≈ c̃(2)(km) − �

(
k2

k2
m

− 1

)2

− EB

(
k2

k2
m

− 1

)4

. (56)

The expansion parameters were then fixed so that the position, height, and the second derivative
of c̃(2)(k) are accurately recovered. This is ensured by

� = −k2
m(c̃(2))′′(km)

8
and EB = c̃(2)(km) − c̃(2)(0) − � . (57)

With this choice of the model parameters and using relevant data for Fe from reference [40], they
reported a fair agreement with MD simulation results for the volume change upon melting, the
bulk moduli of the liquid and solid phases, and for the magnitude and anisotropy of the bcc-liquid
interfacial free energy [142].
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Attempts to control the crystal structure in PFC models: Greenwood and co-workers [145,146]
(GRP-PFC model) have manipulated the two-particle direct correlation function so that its peaks
prefer the desired structural correlations – an approach that enables them to study transitions
between the bcc, fcc, hcp, and sc structures. Wu et al. [147] have investigated the possibility to
control crystal symmetries within the PFC method via tuning nonlinear resonances. They have
proposed a general recipe for developing free-energy functionals that realize coexistence between
the liquid and periodic phases of desired crystal symmetries, and have illustrated this via presenting
a free-energy functional that leads to square-lattice-liquid coexistence in 2D. A possible extension
of the method to the 3D case for simple cubic (sc) structures has also been discussed.

The vacancy PFC model: The vacancy PFC (VPFC) model is an important extension of the
PFC model that adds a term to the free energy that penalizes the negative values of the particle
density, allowing thus for an explicit treatment of vacancies [65]:

F̃ =
∫

dr̃

(
ψ̃

2
(−β + (k2

0 + ∇2
r̃ )2)ψ̃ + ψ̃4

4
+ h(|ψ̃3| − ψ̃3)

)
. (58)

Here, h in the last term on the right-hand-side is a constant. The new term is a piecewise function
that is zero for ψ̃ > 0 and positive for ψ̃ < 0. It is then possible to obtain a mixture of density peaks
(particles) and vacant areas (where ψ̃ ≈ 0), resembling thus to snapshots of liquid configurations
or crystalline structures with defects. This allows structural modelling of the fluid phase and is an
important step towards combining the PFC model with fluid flow. The same approach has been
used to address the dynamics of glasses [47].

The anisotropic PFC model: Recently, Prieler et al. [148] have extended the PFC approach
by replacing the Laplacian in Equation (1) by more general differential operators allowing spatial
anisotropy. Doing so and setting τ = −(k2

0 − β) one arrives at the dimensionless free-energy
functional of the so-called anisotropic PFC (APFC) model:

F̃ =
∫

dr̃

(
ψ̃

2

(
−τ + aij

∂2

∂ x̃i∂ x̃j
+ bijkl

∂4

∂ x̃i∂ x̃j∂ x̃k∂ x̃l

)
ψ̃ + ψ̃4

4

)
. (59)

Here, aij is a symmetric matrix and bijkl is a tensor of rank 4 with the symmetry of an elastic tensor:
i ↔ j, k ↔ l, (i, j) ↔ (k, l) [148]. Choudhary et al. [149,150] proved that based on a functional of
the form (59) further crystal lattices can be assessed as hexagonal, bcc, and corresponding sheared
structures, for which they have presented the elastic parameters and identified the stationary states.

3.1.1.2 The equation of motion. In the PFC models, different versions of the EOM have been
employed. In all cases, conservative dynamics is assumed on the ground that mass conservation
needs to be satisfied. (The original SH model differs from the 1M-PFC model only in the EOM,
for which the SH model assumes non-conserved dynamics.) Most of the PFC models rely on
an overdamped conservative EOM [12,26–39,43,46,59,79,144,148,151]. In fact, this means that
the particle density relaxes diffusively, a feature more characteristic to colloidal systems than to
molten metals: in colloidal systems of particles floating in a carrier fluid, Brownian motion is
the dominant mechanism of particle motion, whose properties are captured reasonably well by
overdamped dynamics [38,79,129] (see also Section 2.2). On the contrary, in molten metals density
deficit can be reduced by hydrodynamic flow of particles. Apparently, a proper dynamics of the
solid (presence of phonons) requires three time scales [139,140]. While the overdamped model
has only the long diffusive time scale, the MPFC model realizes linearized hydrodynamics via
adding a term proportional to the second time derivative of the density field. This new term leads
to the appearance of an acoustic relaxation of the density (not true acoustic phonons) on a fast time
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scale, in addition to the slow diffusive relaxation at later stages [61,138]. In a recent work, phonon
dynamics, that acts on a third time scale, has also been introduced into the PFC model [139]. It has
been shown that there exists a scale window, in which the longitudinal part of the full three-scale
model reduces to the MPFC model, whereas the linearized hydrodynamics of the latter converges
to the diffusive dynamics of the original PFC model for sufficiently long times [139,140].

The overdamped EOM: In the majority of the PFC simulations, an overdamped conserved
dynamics is assumed [that is analogous to the DDFT EOM (15) for colloidal systems, however,
assuming here a constant mobility coefficient, Mρ = ρ0DT/(kBT)].Accordingly, the (dimensional)
EOM has the form

∂ρ

∂t
= ∇r ·

(
Mρ∇r

δF
δρ

)
+ ζρ , (60)

where ζρ stands for the fluctuations of the density flux, whose correlator reads as
〈ζρ(r, t)ζρ(r′, t′)〉 = −2MρkBT∇2

r δ(r − r′)δ(t − t′). (For a discretized form of the conserved
noise, see references [152–154].)

Changing from variable ρ to ψ , introducing Mψ = ((1 + ψ0)DT/(ρref kBT)), scaling time and
distance as t = τ t̃ and x = Rpx̃, where τ = Rp/(DT(1 + ψ0)), and inserting the free energy from
Equation (51), one obtains the following dimensionless EOM:

∂ψ

∂ t̃
= ∇2

r̃

⎛
⎝ψ(1 + |b0|) +

m∑
j=1

|b2j|∇2j
r̃ ψ − ψ2

2
+ ψ3

3

⎞
⎠ + ζψ (61)

with 〈ζψ(r̃, t̃)ζψ(r̃′, t̃′)〉 = −(2/(ρrefRd
p))∇2

r̃ δ(r̃ − r̃′
)δ(t̃ − t̃′).Analogously, the EOM correspond-

ing to Equation (52) has the form

∂ψ

∂t
= ∇r ·

(
Mψρref kBT∇r

(
(Bl + Bs(R

2∇2
r + R4∇4

r ))ψ − v
ψ2

2
+ ψ3

3

))
+ ζ ′

ψ , (62)

where 〈ζ ′
ψ(r, t)ζ ′

ψ(r′, t′)〉 = −2MψkBT∇2
r δ(r − r′)δ(t − t′).

Dimensionless form in SH fashion: Introducing the variables t = τ t̃, x = Rx̃, and ψ =
(3Bs)

1/2ψ̃ = (3Bs)
1/2(ψ ′ − p/3) into Equation (62), where τ = R2/(BsMψρref kBT), the EOM

can be written in the form

∂ψ ′

∂ t̃
= ∇2

r̃ ((−ε′ + (1 + ∇2
r̃ )2)ψ ′ + ψ ′3) + ζ , (63)

where ε′ = ε + p2/3 = −(�B − (v/2)2)/Bs = −((1 + |b0|)/(|b2|2/(4|b4|)) − (1 + v2(|b4|/
|b2|2))) and the dimensionless noise strength is α = 2/(3B2

s ρrefRd) = 25−d/2|b4|2−d/2/(3Rd
pρref

|b2|4−d/2), while the correlator for the dimensionless noise reads as 〈ζ(r̃, t̃)ζ(r̃′, t̃′)〉 = −α∇2
r̃ δ(r̃ −

r̃′
)δ(t̃ − t̃′).

Summarizing, the dynamical m = 2 1M-PFC model has two dimensionless similarity param-
eters ε′ and α composed of the original (physical) model parameters. This is the generic
form of the m = 2 1M-PFC model; some other formulations [36,46] can be transformed into
this form.

The MPFC model: Acoustic relaxation has been partly incorporated by applying an under-
damped EOM. Stefanovic et al. [61] have incorporated a second order time derivative into the
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EOM of their MPFC model, which extends the previous PFC formalism by generating dynamics
on two time scales:

∂2ρ

∂t2
+ κ

∂ρ

∂t
= λ2 δF

δρ
, (64)

where κ and λ are constants. At early times, molecular positions relax fast, consistently with
elasticity theory, whereas at late times diffusive dynamics dominates the kinetics of phase trans-
formations, the diffusion of vacancies, the motion of grain boundaries, and dislocation climb. In
other words, elastic interactions mediated by wave modes have been incorporated, which travel
on time scales that are orders of magnitude slower than the molecular vibrations yet considerably
faster than the diffusive time scale. A similar EOM has been proposed for the VPFC model, whose
free-energy functional forces the order parameter to be non-negative. The resulting approach dic-
tates the number of atoms and describes the motion of each of them. Solution of the respective EOM
might be viewed as essentially performing MD simulations on diffusive time scales [65]. A simi-
lar approach has been adapted to study the dynamics of monatomic and binary glasses, however,
using the MPFT-type free-energy functionals and temperature-dependent noise terms [47].

3.1.1.3 The Euler–Lagrange equation. The ELE can be used to study equilibrium features
including the mapping of the phase diagram [28] as well as the evaluation of the free energy of
the liquid–solid interface [28] and of the nucleation barrier [35]. We note that noise may influence
the phase diagram and other physical properties. Therefore, the results from the ELE and EOM
are expected to converge for ζ → 0. We also call attention to the fact that so far as the equilibrium
results (obtained by ELE) are concerned, the SH and 1M-PFC models are equivalent.

Once the free-energy functional is defined for the specific PFC model, its extremes can be
found by solving the respective ELE, which reads as

δF̃
δψ̃

= δF̃
δψ̃

∣∣∣∣∣
ψ̃0

, (65)

where ψ̃0 is the reduced particle number density of the unperturbed initial liquid, while a no-
flux boundary condition is prescribed at the boundaries of the simulation window (n · ∇r̃ψ̃ = 0
and (n · ∇r̃)∇2

r̃ ψ̃ = 0, where n is the normal vector of the boundary). For example, inserting the
1M-PFC free energy and rearranging the terms, one arrives at

(−ε + (1 + ∇2
r̃ )2)(ψ̃ − ψ̃0) + p(ψ̃2 − ψ̃2

0 ) − (ψ̃3 − ψ̃3
0 ) = 0 . (66)

Equation (66) together with the boundary conditions represents a fourth-order boundary value
problem (BVP).

Multiplicity of solutions of the ELE: It is worth noting that in the case of the PFC/SH-type
models, a multiplicity of solutions can be usually found for the same BVP, defined by the boundary
conditions and the ELE. This feature of the stationary solutions has been recently addressed in
some detail in 2D for the SH [155] and in 1D for the VPFC [156] models. (Figure 8 illustrates
this phenomenon via showing the bifurcation diagram for compact hexagonal clusters in the SH
model [155].)

3.1.2. Binary PFC models

3.1.2.1 The free energy. Binary SH form: The earliest binary extension of the PFC model has
been proposed in the seminal paper of Elder et al. [12] obtained by adding an interaction term
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Figure 8. Multiplicity of localized hexagonal cluster solutions for the dynamic SH equation
∂u/∂t = −(1 + ∇2

r̃ )2u − μu + νu2 − u3 with ν = 1.6. The central panel displays a part of the bifurcation
diagram for localized hexagonal patches (for details see reference [155]). The solid and dashed lines stand
for the stable and unstable solutions, respectively. The vertical lines in grey correspond to the fold limits
of planar (10) and (11) hexagon pulses. The red and green regions indicate where temporal self-completion
does or does not occur, respectively. Panels 1–4 show colour plots of the hexagon patches at the inner and
outer left folds. A different parametrization is used here: μ = −ε + 3ψ2

0 . (Reproduced with permission from
Lloyd et al. [155] © 2008 by the Society for Industrial and Applied Mathematics.)

with coefficient A to the free energy of two mixed single-component SH free energies. Working
with particle densities ψ̃1 and ψ̃2, this yields the free energy

F̃ =
∫

dr̃

(
ψ̃1

2
(−β1 + (k2

1 + ∇2
r̃ )2)ψ̃1 + ψ̃4

1

4
+ ψ̃2

2
(−β2 + (k2

2 + ∇2
r̃ )2)ψ̃2 + ψ̃4

2

4
+ Aψ̃1ψ̃2

)
.

(67)
Here, the physical properties (bulk moduli, lattice constants, etc.) of the individual species are
controlled by the parameters with subscripts 1 and 2, respectively, and by the average values of the
particle densities ψ̃1 and ψ̃2. It has been shown that the model can be used for studying structural
phase transitions [12].

DFT-based binary PFC model: The most extensively used binary generalization of the 1M-
PFC model has been derived starting from a binary perturbative DFT, where the free energy
is Taylor expanded relative to the liquid state denoted by ρ̄A and ρ̄B, respectively, up to the
second order in the density differences �ρA = ρA − ρ̄A and �ρB = ρB − ρ̄B (up to two-particle
correlations) [26]:

F
kBT

=
∫

dr
(

ρA ln

(
ρA

ρ̄A

)
− �ρA + ρB ln

(
ρB

ρ̄B

)
− �ρB

)

− 1

2

∫
dr1

∫
dr2 (�ρA(r1)c

(2)
AA(r1, r2)�ρA(r2)

+ �ρB(r1)c
(2)
BB(r1, r2)�ρB(r2) + 2�ρA(r1)c

(2)
AB(r1, r2)�ρB(r2)) . (68)

It is assumed here that all two-point correlation functions are isotropic, that is, c(2)
ij (r1, r2) =

c(2)
ij (|r1 − r2|). Taylor expanding the direct correlation functions in Fourier space up to fourth
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order, one obtains c(2)
ij (|r1 − r2|) = (c(2)

ij,0 − c(2)
ij,2∇2

r2
+ c(2)

ij,4∇4
r2
)δ(r1 − r2) in real space [26]. The

partial direct correlation functions c(2)
ij can be related to the measured or computed partial structure

factors.
Following Elder et al. [26], the reduced partial particle density differences are defined as ψA =

(ρA − ρ̄A)/ρ0 and ψB = (ρB − ρ̄B)/ρ0, where ρ0 = ρ̄A + ρ̄B. They have introduced then the new
variables ψ = ψA + ψB and ψ̂ = (ψB − ψA) + (ρ̄B − ρ̄A)/ρ0, obtaining fields whose amplitude
expansion yields field amplitudes resembling order parameters associated with structural and
composition changes in the conventional PF models. Expanding the free energy around ψ̂ = 0
and ψ = 0, one obtains

F
ρref kBT

=
∫

dr
(

ψ

2
(Bl + Bs(2R2∇2

r + R4∇4
r ))ψ + s

ψ3

3
+ v

ψ4

4

+ γ ψ̂ + w
ψ̂2

2
+ u

ψ̂4

4
+ L2

2
(∇rψ̂)2 + · · ·

)
. (69)

This model has been used for studying a broad range of phase transitions, including the formation
of solutal dendrites, eutectic structures [26,28], and the Kirkendall effect [64].

Binary PFC model for surface alloying: A somewhat different formulation of the binary model
has been proposed to model compositional patterning in monolayer aggregates of binary metallic
systems by Muralidharan and Haataja [48]:

F =
∫

dr
(

ρ

2
(β(c) + (k2

c + ∇2
r )2)ρ + ρ4

4
+ V(c)ρ

+ f0

(
w2

0

2
(∇rc)2 − θc

c2

2
+ θ

2
((1 + c) ln(1 + c) + (1 − c) ln(1 − c))

))
. (70)

In this construction, the values c = ±1 of the concentration field stand for different atomic species,
V(c) is the atom-specific substrate-film interaction, kc incorporates the bulk lattice constant of dif-
ferent species, f0 governs the relative strength of the elastic and chemical energies, while θc is the
critical temperature, θ the scaled absolute temperature, and w0 tunes the chemical contribution to
the interface energy between different species. Starting from this free-energy functional, Muralid-
haran and Haataja have shown, that their PFC model incorporates competing misfit dislocations
and alloying in a quantitative way, and then employed the model for investigating the misfit- and
line tension dependence of the domain size [48].

3.1.2.2 The equations of motion. Dimensionless binary form in the SH fashion: The same type
of overdamped conservative dynamics has been assumed for the two types of atoms [12]:

∂ψ̃1

∂t
= M1∇2

r̃
δF̃
δψ̃1

+ ζ1 and
∂ψ̃2

∂t
= M2∇2

r̃
δF̃
δψ̃2

+ ζ2 . (71)

Here, Mi and ζi are the mobility and the noise term applying to species i ∈ {1, 2}.
DFT-based binary PFC model: In this widely used formulation of the binary 1M-PFC model,

it is assumed that the same mobility M applies to the two species A and B (corresponding to
substitutional diffusion) decoupling the dynamics of the fields ψ and ψ̂ . Assuming, furthermore,
a constant effective mobility Me = 2M/ρ2 and conserved dynamics, the equations of motions for
the two fields have the form [26]

∂ψ

∂t
= Me∇2

r
δF
δψ

and
∂ψ̂

∂t
= Me∇2

r
δF
δψ̂

. (72)
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In general, the coefficients Bl, Bs, and R in Equation (69) depend on ψ̂ . A Taylor expansion of
Bl(ψ̂), Bs(ψ̂), and R(ψ̂) in terms of ψ̂ yields new coefficients Bl

i, Bs
i , and Ri with i = 0, 1, 2, . . .

that are independent of ψ̂ . Retaining only the coefficients Bl
0, Bl

2, Bs
0, R0, and R1, and inserting the

free energy (69) into Equations (72), one obtains

∂ψ

∂t
= Me∇2

r (ψ(Bl
0 + Bl

2ψ̂
2) + sψ2 + vψ3

+ Bs
0

2
(2(R0 + R1ψ̂)2∇2

r + (R0 + R1ψ̂
4)∇4

r )ψ

+ Bs
0

2
(2∇2

r (ψ(R0 + R1ψ̂)2) + ∇4
r (ψ

(
R0 + R1ψ̂)4))) , (73)

∂ψ̂

∂t
= Me∇2

r (Bl
2ψ̂ψ2 + γ + wψ̂ + uψ̂3 − L2∇2

r ψ̂

+ 2Bs
0ψ((R0 + R1ψ̂)R1∇2

r + (R0 + R1ψ̂)3R1∇4
r )ψ) . (74)

3.1.2.3 The Euler–Lagrange equations. Since the derivation of the ELE is straightforward for
all the binary PFC models, we illustrate it for the most frequently used version deduced from
the binary Ramakrishnan–Yussouff-type classical perturbative DFT. The extremum of the grand
potential functional requires that its first functional derivatives are zero, that is,

δF
δψ

= δF
δψ

∣∣∣∣
ψ0,ψ̂0

and
δF
δψ̂

= δF
δψ̂

∣∣∣∣∣
ψ0,ψ̂0

, (75)

where ψ0 and ψ̂0 are the total and relative particle densities for the homogeneous initial state.
Inserting Equation (69) into Equation (75), one obtains after rearranging

(Blψ̂ + BsRψ̂2(2∇2
r + Rψ̂2∇4

r ) + Bs

2
(2∇2

r (R2) + ∇4
r (R4)))(ψ − ψ0)

= −s(ψ2 − ψ2
0 ) − v(ψ3 − ψ3

0 ) , (76)

L2∇2
r ψ̂ − ∂Bl

∂ψ̂
(ψ̂ψ2 − ψ̂0ψ

2
0 ) − 2BsR

∂R

∂ψ̂
ψ(∇2

r + R2∇4
r )ψ

= w(ψ̂ − ψ̂0) + u(ψ̂3 − ψ̂3
0 ) , (77)

where R = R0 + R1ψ̂ . These equations are to be solved assuming no-flux boundary conditions at
the border of the simulation box for both fields [n · ∇rψ = 0, (n · ∇r)∇2

r ψ = 0, n · ∇rψ̂ = 0, and
(n · ∇r)∇2

r ψ̂ = 0].

3.1.3. PFC models for liquid crystals

Another level of complexity is to consider interactions between particles, that are not any longer
spherically symmetric. The simplest case being the oriented particles, that is, particles with a
fixed orientation along a given direction where the interaction U2(r1 − r2) is not any longer
radially symmetric [as assumed in Equation (36)]. The derivation described in Section 2.3 was
straightforwardly extended towards this case leading to a microscopic justification of the APFC
model (59) proposed in Section 3.1.1.1. Clearly, the resulting crystal lattices are anisotropic,
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which leads also to an anisotropic crystal growth. Much more complicated, however, is the
case of orientable particles, which can adjust their orientation and form liquid crystalline
mesophases.

Therefore, we now address orientable anisotropic particles, that possess orientational degrees
of freedom. In order to keep the effort manageable, the particles are assumed to be uniaxial,
that is, they are rotationally symmetric around an internal axis. Consequently, their orientations
are described by unit vectors ûi with i ∈ {1, . . . , N} along their internal symmetry axes. Most
of the statistical quantities can suitably be generalized towards orientational degrees of freedom
by including also the orientational configuration space on top of the translational configurational
space.

3.1.3.1 Statics. For orientable particles, the one-particle density is now defined via

ρ(r, û) =
〈

N∑
i=1

δ(r − ri)δ(û − ûi)

〉
(78)

and contains also the probability distribution of the orientations as expressed by the dependence on
the orientational unit vector û. Its full configurational mean is given by the mean particle number
density

ρ0 = 1

4πV

∫
dr

∫
dû ρ(r, û) = N

V
, (79)

where the orientational integral denotes integration over the two-dimensional unit sphere S2.
Now the external potential is U1(r, û) and couples also to the particle orientation. In general,
also the pair-interaction potential U2(r1 − r2, û1, û2) has an orientational dependence. The corre-
sponding equilibrium Helmholtz free-energy functional F[ρ(r, û)] can be split as usual into three
contributions

F[ρ(r, û)] = Fid[ρ(r, û)] + Fexc[ρ(r, û)] + Fext[ρ(r, û)] (80)

namely the ideal rotator-gas free-energy contribution

Fid[ρ(r, û)] = kBT
∫

dr
∫

dû ρ(r, û)(ln(�3ρ(r, û)) − 1) , (81)

the non-trivial excess free-energy functional Fexc[ρ(r, û)], and the external free-energy contribu-
tion (Section 2.1)

Fext[ρ(r, û)] =
∫

dr
∫

dû ρ(r, û)U1(r, û) . (82)

Analogously to Equation (8), a functional Taylor expansion

Fexc[ρ(r, û)] = F (0)
exc(ρref) + kBT

∞∑
n=1

1

n!F
(n)
exc[ρ(r, û)] (83)

with the nth-order contributions

F (n)
exc[ρ(r, û)] = −

∫
dr1 · · ·

∫
drn

∫
dû1 · · ·

∫
dûn c(n)(rn, ûn

)

n∏
i=1

�ρ(ri, ûi) , (84)
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the n-particle direct correlation function c(n)(rn, ûn
), and the abbreviations

rn = (r1, . . . , rn) , ûn = (û1, . . . , ûn) (85)

are used. Again, the constant zeroth-order contribution of the functional Taylor expansion (83) is
irrelevant and the first-order contribution vanishes. In the Ramakrishnan–Yussouff approximation,
the functional Taylor expansion is truncated at second order.

In order to derive PFC-type models for liquid crystals, one can follow the same strategy as for
spherical systems: first, the full density field ρ(r, û) is parametrized by small and slowly varying
space-dependent multi-component order-parameter fields. An insertion into the density functional
together with a perturbative and gradient expansion yields a local PFC-type free energy. Then
several coupling terms of the order-parameter components arise, whose prefactors are given by
moments of the generalized direct fluid correlation functions. Still, the gradient expansion is more
tedious, since the orientational space has a more complicated topology. For stability reasons, one
has to assume that the coefficients of the highest-order terms in the gradients and order-parameter
fields in the PFC model are positive in the full free-energy functional. If this appears not to be the
case for a certain system, it is necessary to take further terms of the respective order-parameter
field up to the first stabilizing order into account.

3.1.3.2 Two spatial dimensions. We now consider first the case of 2D both for the translational
and orientational degrees of freedom. Here, the topology of orientations is simpler than in 3D.
Obviously, all previous expressions can be changed towards two dimensions by replacing the
volume V by an area A, by changing the unit sphere S2 into the unit circle S1, and by replacing �3

by �2 in Equation (81). The orientational vector û(ϕ) = (cos(ϕ), sin(ϕ)) can be parametrized by
a single polar angle ϕ ∈ [0, 2π).

Derivation of the PFC free-energy functional: First we chose as order-parameter fields
the reduced translational density, the polarization, and the nematic tensor field. The reduced
translational density is defined via

ψ(r) = 1

2πρref

∫
dû (ρ(r, û) − ρref) , (86)

while the polarization is

P(r) = 1

πρref

∫
dû ρ(r, û)û (87)

and describes the local averaged dipolar orientation of the particles. Finally, the symmetric and
traceless nematic tensor with the components

Qij(r) = 2

πρref

∫
dû ρ(r, û)

(
uiuj − 1

2
δij

)
(88)

describes quadrupolar ordering of the particles. Equivalently, one could decompose the polariza-
tion P(r) = P(r)p̂(r) into its modulus P(r) and the local normalized dipolar orientation p̂(r) and
use the two order parameters P(r) and p̂(r) instead of P(r). Similarly, the nematic tensor can be
expressed by [157,158]

Qij(r) = S(r)(ni(r)nj(r) − 1
2δij) (89)

through the nematic order parameter S(r), which measures the local degree of quadrupolar ori-
entational order [159], and the nematic director n̂(r) = (n1(r), n2(r)). Note that n̂(r) and p̂(r) do
not necessarily coincide.
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One may expand the total density in terms of its orientational anisotropy as

ρ(r, û) = ρref(1 + ψ(r) + Pi(r)ui + uiQij(r)uj) . (90)

Inserting the parametrization (90) into Equation (81), performing a Taylor expansion of the inte-
grand up to the fourth order in the order-parameter fields, which guarantees stability of the
solutions, and carrying out the angular integration yields to the approximation

Fid[ψ , Pi, Qij] = Fid + πρrefkBT
∫

dr fid(r) (91)

with the local scaled ideal rotator-gas free-energy density

fid = ψ

4
(8 − 2P2

i + 2PiQijPj − Q2
ij) + ψ2

4
(4 + 2P2

i + Q2
ij) − ψ3

3
+ ψ4

6

+ P2
i

8
(4 + Q2

kl) − PiQijPj

4
+ P2

i P2
j

16
+ Q2

ij

4
+ Q2

ijQ
2
kl

64
, (92)

where Fid = 2πρref kBTA(ln(�2ρref) − 1) is an irrelevant constant.
If the functional Taylor expansion (83) for the excess free energy is truncated at the fourth

order, an insertion of the parametrization (90) into the functional (84) and a gradient expansion
yield [160]

F (n)
exc[ψ , Pi, Qij] = −

∫
dr f (n)

exc (r) (93)

with

f (2)
exc = A1ψ

2 + A2(∂iψ)2 + A3(∂
2
k ψ)2 + B1(∂iψ)Pi + B2Pi(∂jQij) + B3(∂iψ)(∂jQij)

+ C1P2
i + C2Pi(∂

2
k Pi) + C3(∂iPi)

2 + D1Q2
ij + D2(∂jQij)

2 , (94)

f (3)
exc = E1ψ

3 + E2ψP2
i + E3ψQ2

ij + E4PiQijPj + F1ψ
2(∂iPi) + F2ψPi(∂jQij)

+ F3(∂iψ)QijPj + F4P2
i (∂jPj) + F5(∂iPi)Q

2
kl + F6PiQki(∂jQkj) , (95)

f (4)
exc = G1ψ

4 + G2ψ
2P2

i + G3ψ
2Q2

ij + G4ψPiQijPj + G5P2
i Q2

kl + G6P2
i P2

j

+ G7Q2
ijQ

2
kl . (96)

Obviously, this creates a much more sophisticated series of coupling terms between gradients of
the different order-parameter fields. They are all allowed by symmetry. There are altogether 28
coupling coefficients Ai, Bi, Ci, Di, Ei, Fi, Gi, which can in principle all be expressed as moments
over the microscopic fluid direct correlation functions. These explicit expressions are summarized
in Appendix A.1.

The general result for the two-dimensional PFC free energy constituted by Equations (94)–(96)
contains several special cases, known from the literature, which we now discuss in more detail.

These special cases follow from the full free-energy functional either by choosing some of the
order-parameter fields as zero or as a constant different from zero and by taking into account the
contributions of the functional Taylor expansion (83) only up to a certain order nmax ∈ {2, 3, 4}.
Table 2 gives an overview about the most relevant special cases.

The most simple special cases are obtained for either a constant translational density ψ ,
polarization Pi, or nematic tensor Qij with an arbitrary choice for nmax, when all remaining order-
parameter fields are assumed to be zero. These special cases are known to be Landau expansions
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Table 2. Relevant special cases that are contained in the polar PFC model for 2D. nmax is the order of the
functional Taylor expansion (83). If nmax is not specified, it can be arbitrary (arb.).

ψ Pi Qij nmax Associated model

0 0 Const. Arb. Landau expansion in Qij

0 0 Qij(r) 2 Landau-de Gennes free energy for uniaxial nematics [158]
0 0 Qij(r) Arb. Gradient expansion in Qij(r)
0 Const. 0 Arb. Landau expansion in Pi
0 Pi(r) 0 Arb. Gradient expansion in Pi(r)
Const. 0 0 Arb. Landau expansion in ψ

ψ(r) 0 0 2 PFC model of Elder et al. [26]
ψ(r) 0 0 Arb. Gradient expansion in ψ(r)
Const. Pi(r) Qij(r) 4 Constant-density approximation
ψ(r) 0 Qij(r) 2 PFC model of Löwen [67]
ψ(r) Pi(r) Qij(r) 4 Full free-energy functional

in ψ , Pi, and Qij, respectively. If the only non-vanishing order-parameter field is not constant, but
space-dependent, then the functional can be called a gradient expansion in this order-parameter
field. If additionally nmax = 2 is chosen, the gradient expansion in ψ(r) becomes the original PFC
model of Elder et al. [26] and the gradient expansion in Qij(r) reduces to the Landau-de Gennes
free energy for inhomogeneous uniaxial nematics [158]. When only ψ is constant and the other
order-parameter fields are space-dependent, we recover the case of an incompressible system. The
liquid crystalline PFC model of Löwen [67] is obtained for nmax = 2, if the translational density
and the nematic tensor are space-dependent, while the polarization vanishes, and if the nematic
tensor is parametrized according to Equation (89). In the polar PFC model for 2D, one can also
consider the case of a space-dependent translational density ψ(r), a space-dependent polarization
Pi(r), and a vanishing nematic tensor, that corresponds to a ferroelectric phase without orienta-
tional order, but such a phase was never observed in experiments up to the present day. Therefore,
this case is not included in Table 2.

Equilibrium bulk phase diagram: While there are two independent parameters for the original
PFC model (Equation (1) and Figure 9), the number of coupling parameters explodes for the general

Figure 9. (a) Single-mode approximation to the phase diagram of the 1M-PFC model in 2D with ε ≡ β and
the average reduced particle density ψ̄ . (Reproduced with permission from Elder et al. [12] © 2002 by the
American Physical Society.) (b) Section of the 3D phase diagram of the 1M-PFC model evaluated by the
Euler–Lagrange method described in reference [28] with ε ≡ ε and the average reduced particle density ψ0.
Note the stability domains of the bcc, hcp, and fcc phases. The homogeneous liquid is unstable right of the
heavy grey line emerging from linear stability analysis [28]. (Reproduced from Tóth et al. [28] © 2010 by
Institute of Physics Publishing.)
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liquid crystalline PFC model as proposed in Equations (94)–(96) to 27 coupling coefficients. One
of them can be incorporated into a length scale such that 26 coefficients remain. Therefore, a
numerical exploration of the equilibrium phase diagram requires a much higher effort. Maybe not
too surprising, such calculations are sparse and it was only until recently that the phase diagram was
calculated for the apolar PFC model [67], where P(r) = 0, which contains only five independent
parameters [69]. We summarize and outline the basic findings of reference [69] in Section 3.2.2.

3.1.3.3 Three spatial dimensions. We now discuss the three-dimensional (d = 3) PFC model
for liquid crystals. In spherical coordinates, the three-dimensional orientation vector is

û(θ , φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) (97)

with the polar angle θ ∈ [0, π ] and the azimuthal angle φ ∈ [0, 2π). We consider here only the
apolar case, where the polarization vanishes: P(r) = 0. There exists indeed a zoo of realizations
of apolar particles both in the molecular and in the colloidal regime. For suitable interactions, see
references [161–169].

Following similar ideas as outlined in Section 3.1.3.2 for two dimensions, we define as the
corresponding order parameters the reduced translational density

ψ(r) = 1

4πρref

∫
dû (ρ(r, û) − ρref) (98)

and the 3 × 3-dimensional symmetric and traceless nematic tensor

Qij(r) = 15

8πρref

∫
dû ρ(r, û)

(
uiuj − 1

3
δij

)
. (99)

Again, the nematic tensor can be expressed by the nematic order-parameter field S(r) and
the nematic director n̂(r) = (n1(r), n2(r), n3(r)), that is here and is the only unit vector that
denotes a preferred direction in the liquid crystalline system. In the three-dimensional case, the
decomposition of the nematic tensor is given by [157,158]

Qij(r) = S(r)( 3
2 ni(r)nj(r) − 1

2δij) . (100)

Note that the nematic order-parameter field S(r) is the biggest eigenvalue of the nematic tensor
Qij(r) and the nematic director n̂(r) is the corresponding eigenvector. Accordingly, with the order-
parameter fields ψ(r) and Qij(r), the one-particle density is approximated by

ρ(r, û) = ρref(1 + ψ(r) + uiQij(r)uj) . (101)

As before, the Helmholtz free-energy functional has to be approximated by a Taylor expansion
around the homogeneous reference system and by a gradient expansion [68]. The ideal rotator-gas
free-energy functional is approximated by

Fid[ψ , Qij] = Fid + πρref kBT
∫

dr fid(r) (102)

with the local scaled ideal rotator-gas free-energy density

fid = 4ψ

(
1 − tr(Q2)

15
+ 8tr(Q3)

315

)
+ 2ψ2

(
1 + 2tr(Q2)

15

)
− 2ψ3

3
+ ψ4

3

+ 4tr(Q2)

15
− 16tr(Q3)

315
+ 8tr(Q4)

315
. (103)

Here, tr(·) denotes the trace operator and Fid = 4πρrefVkBT(ln(�3ρref) − 1) an irrelevant con-
stant. For the excess free-energy functional, the Ramakrishnan–Yussouff approximation (11) is
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used together with Equation (101) involving the direct correlation function c(2)(r1 − r2, û1, û2).
Respecting all symmetries, one finally obtains the following approximation for the excess
free-energy functional

F (2)
exc[ψ , Qij] = −

∫
dr f (2)

exc (r) (104)

with the local scaled excess free-energy density

f (2)
exc = A1ψ

2 + A2(∂iψ)2 + A3(∂
2
k ψ)2 + B1Q2

ij + B2(∂iψ)(∂jQij)

+ K̃1(∂jQij)
2 + K̃2Qij(∂

2
k Qij) . (105)

The seven coupling coefficients A1, A2, A3, B1, B2, K̃1, K̃2 can be expressed as generalized moments
of the microscopic correlation function c(2)(r1 − r2, û1, û2). The full expressions are summarized
inAppendixA.2. We remark that K̃1 and K̃2 correspond to the traditional Frank constants appearing
in Frank’s elastic energy [158,170].

Special cases of the free-energy density are summarized in Table 3. As for the PFC model for
2D, one obtains a Landau expansion in the nematic tensor Qij, if the translational density ψ(r)
is zero and the nematic tensor is constant so that all gradients vanish. Analogously, one obtains a
Landau expansion in ψ , if Qij(r) is zero and the translational density is constant. When only ψ is
zero and Qij(r) is space-dependent, the Landau-de Gennes free energy for inhomogeneous uniaxial
nematics [158] is recovered again. Clearly, the original PFC model of Elder et al. [26] for isotropic
particles in 3D can be obtained from the full free-energy functional by choosing Qij(r) = 0. The
case of a constant ψ and a space-dependent Qij(r) corresponds to an incompressible system.
Finally, we note that the full functional was recently numerically evaluated for several situations
by Yabunaka and Araki in reference [171].

3.1.3.4 Dynamics. DDFT can now be used to derive the dynamics of the PFC models for liquid
crystals. DDFT is well justified for Brownian anisotropic particles (as, for example, colloidal rods
or platelets).The basic derivation is similar to that performed for spherical particles in Section 2.3.2,
but in practice it is much more tedious. The basic derivation is performed in three steps. At first, the
order-parameter fields, that have been chosen for the statics, are assumed to be time-dependent and
the time-dependent one-particle density ρ(r, û, t) is approximated in terms of these time-dependent
order-parameter fields. Secondly, the chain rule for functional differentiation is used to express the
functional derivative δF/δρ of the Helmholtz free-energy functional F in terms of the functional
derivatives of the free-energy functional with respect to the chosen order-parameter fields. Finally,
the time-dependent parametrization for the one-particle density and the time-dependent expression
for the functional derivative δF/δρ are inserted into the DDFT equation and a set of in general
coupled dynamic equations for the single-order parameter fields is obtained by an orthogonal
projection of the DDFT equation with respect to the orientation û.

Table 3. Relevant special cases that are contained in the apolar PFC model for 3D.

ψ Qij Associated model

0 Const. Landau expansion in Qij

0 Qij(r) Landau-de Gennes free energy for uniaxial nematics [158]
Const. 0 Landau expansion in ψ

ψ(r) 0 PFC model of Elder et al. [26]
Const. Qij(r) Constant-density approximation
ψ(r) Qij(r) Full free-energy functional
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We first consider the case of 2D (d = 2). The time-dependent noise-averaged one-particle
number density is now

ρ(r, û, t) =
〈

N∑
i=1

δ(r − ri(t))δ(û − ûi(t))

〉
(106)

and its order-parameter parametrization is

ρ(r, û, t) = ρref(1 + ψ(r, t) + Pi(r, t)ui + uiQij(r, t)uj) . (107)

The DDFT equation for orientational degrees of freedom in 2D (without a hydrodynamic
translational-rotational coupling) reads [108]

ρ̇(r, û, t) = ∇r ·
(

DT(û)

kBT
ρ(r, û, t)∇r

δF(T , [ρ])
δρ(r, û, t)

)
+ DR

kBT
∂ϕ

(
ρ(r, û, t)∂ϕ

δF(T , [ρ])
δρ(r, û, t)

)
(108)

with the translational short-time diffusion tensor

DT(û) = D‖û ⊗ û + D⊥(1 − û ⊗ û) . (109)

Here, D‖ and D⊥ are the translational diffusion coefficients for the translation parallel and per-
pendicular to the orientation û = (cos(φ), sin(φ)), respectively, and the symbol 1 denotes the
2 × 2-dimensional unit matrix. The two terms on the right-hand-side of this DDFT equation
correspond to the pure translation and pure rotation, respectively.

The CMA is now

ρ̇(r, û, t) = ρref∇r ·
(

DT(û)

kBT
∇r

δF(T , [ρ])
δρ(r, û, t)

)
+ ρref

DR

kBT
∂2
ϕ

δF(T , [ρ])
δρ(r, û, t)

. (110)

Within the CMA, this yields for the dynamics of the order-parameter fields

ψ̇ + ∂iJ
ψ
i = 0 , Ṗi + �P

i = 0 , Q̇ij + �
Q
ij = 0 (111)

with the currents and quasi-currents

Jψ
i = −2α1∂i

δF
δψ

− 2α3∂j
δF
δQij

, (112)

�P
i = −2α2∂

2
k

δF
δPi

− 4α3∂i∂j
δF
δPj

+ 2α4
δF
δPi

, (113)

�
Q
ij = −4α1∂

2
k

δF
δQij

− 2α3

(
2∂i∂j

δF
δψ

− δij∂
2
k

δF
δψ

)
+ 8α4

δF
δQij

. (114)

The coefficients αi in Equations (112)–(114) are defined as

α1 = D‖ + D⊥
8λ

, α2 = D‖ + 3D⊥
8λ

, α3 = D‖ − D⊥
8λ

, α4 = DR

2λ
. (115)

Note that D‖ � D⊥ holds for all types of uniaxial particles, if the vector û for the orientation of
the axis of symmetry is chosen properly.

Finally, we remark that in three dimensions (d = 3) the dynamics is much more involved but
can in principle be derived along similar lines from DDFT [112]. Recently, the CMA dynamics
was considered in reference [171]. A main result of this reference is shown in Section 5.2.
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3.1.4. Numerical methods

3.1.4.1 The equation of motion. The commonly used combination of explicit time-stepping
with a finite-difference (FD) scheme has been routinely applied for solving the EOM of the PFC
models [172]. However, owing to the high-order differential operators appearing in the EOM of the
PFC models (up to 12th order), explicit time-stepping suffers from severe constraints. Energy sta-
ble large time-step implicit FD methods have been developed for the PFC [173] and MPFC [174]
equations, which lead to large sets of sparse algebraic equations. The resultant algebraic equations
can be solved using nonlinear multigrid methods [175]. As an elegant alternative, pseudo-spectral
methods can be used, which combine unconditionally stable time marching with algebraic equa-
tions of the diagonal form [176]. Furthermore, the pseudo-spectral methods offer exponential
convergence with the spatial resolution as opposed to the polynomial convergence rate of the FD
schemes. This means that with smaller spatial resolution, one obtains results comparable to those
obtained with high spatial resolution in the real space methods. Using operator splitting techniques,
the domain of the spectral methods has been extended to a wide range of problems, including PDEs
with variable coefficients [177]. A detailed study on the application of this method to PFC models
shows that the respective schemes can be parallelized easily and efficiently [177], yielding up to
105 times faster computations, when compared to FD schemes. Adaptive time stepping [176] may
further accelerate such computations. Other numerical methods (e.g. stable semi-implicit finite
element discretization combined with adaptive time stepping [178]) have also been used for PFC
models, however, further investigations are needed to assess their numerical accuracy.

3.1.4.2 The Euler–Lagrange equation and other saddle point finding methods. In recent
works [28,35], the ELE has been solved using a semi-spectral successive approximation scheme
combined with the operator-splitting technique [179]. A different approach termed the fixed length
simplified string method has been proposed to find the minimum energy path and the nucleation
barrier in reference [32].

3.1.5. Coarse-graining the PFC models

Soon after the appearance of the 1M-PFC model, attempts have been made to use this atomistic
approach as a basis for deriving phase-field-type coarse-grained models, using the amplitude
equation method. This extension to the 1M-PFC formalism, when combined with the adaptive
grid, has the potential to enable simulations of mesoscopic phenomena (μm → mm) that are
resolved down to the atomic scale, still incorporating all the respective physics.

3.1.5.1 Amplitude equations based on renormalization group theory. Goldenfeld et al. [141]
have developed a computationally efficient approach to polycrystalline solidification, based on the
1M-PFC model. The nanoscale particle density distribution is reconstructed from its slowly varying
amplitude and phase, obtained by solving the rotationally covariant equations of motion derived
from renormalization group theory. They have shown in two dimensions that the microscopic
density distributions from their amplitude and phase equations show a very close match to the
1M-PFC result. In later works, Athreya and co-workers [19,20] have combined this approach with
adaptive mesh algorithms, leading to a substantial acceleration of the numerical code. (Possible
ways of using the renormalization group methods have been discussed in references [20,180].)
Despite the impressive computational gains achieved when combining renormalization group
theory with adaptive mesh refinement, several technical issues require further attention, as pointed
out in reference [20]. Amongst them are the following two open issues [20]:

• The first one concerns the boundary conditions used in describing polycrystalline matter
under externally applied loads or displacements such as shear, uniaxial or biaxial loading
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states [59,60]. For the scalar order-parameter field, the 1M-PFC model employs, appropriate
boundary conditions have been worked out [61]. In the renormalization-group-theory-based
amplitude expansion method, the scalar order parameter of the 1M-PFC model is replaced by
a complex one. This means that for polycrystals under externally applied load, a meaningful
translation of the respective boundary conditions to amplitudes and phases is required. This
can, however, be mathematically demanding, since it requires the solution of systems of
nonlinearly coupled equations at the boundaries [20].

• Another important issue, as pointed out in reference [20], follows from the fact that the
renormalization-group-theory-based amplitude equations rely on the single-mode approxi-
mation. Accordingly, for situations that require higher modes (e.g. large distance from the
critical point), the respective higher-mode amplitude equations still need to be developed
systematically [20].

3.1.5.2 Phenomenological amplitude equations. Approximate treatments based on the ampli-
tude expansion of the free energy of the 1M-PFC models (i.e. expressing F in terms of the Fourier
amplitude of the dominant density waves) have been developed. They have been used for various
purposes, such as determining the anisotropy of liquid-solid interfacial free energies [41,144],
the Asaro-Tiller-Grinfeld (ATG) morphological instability of a stressed crystal surface, polycrys-
talline growth from the melt, grain-boundary energies over a wide range of misorientation, and
grain-boundary motion coupled to shear deformation [52,63]. Yeon et al. [181] have used an
amplitude-equation approach to model the evolution of a two-phase system that has been vali-
dated by investigating the Gibbs-Thomson effect in 2D. Elder et al. [31] have proposed amplitude
representations for the binary PFC model in the cases of triangular lattice (2D) and bcc and fcc
(3D) structures. The respective equations of motion have been related to those of the original PF
theory of binary freezing and elasticity, providing explicit connection between the PF and PFC
approaches. The abilities of the phenomenological amplitude models have been demonstrated for
eutectic solidification, solute migration at grain boundaries, and for the formation of quantum dots
on nanomembranes [31].

3.2. Phase diagrams the PFC models realize

The different versions and extensions of the PFC model, reviewed in Section 3.1, lead to different
phase diagrams, which in turn depend on the dimensionality of the system.

3.2.1. Phase diagram of single-component and binary systems

The phase diagrams of the 1M-PFC model [12] in 2D and 3D are shown in Figure 9. In 2D, a
single crystalline phase (the triangular phase) appears that coexists with the liquid and a striped
phase [12]. Remarkably, phase diagrams of comparable structure have been predicted for weakly
charged colloids with competing interactions [182]. In 3D, as implied earlier by EOM studies [42],
and confirmed by full thermodynamic optimization [143] and an equivalent method based on solv-
ing the ELE [28], stability domains exist for the homogeneous fluid, bcc, fcc, and hcp structures,
besides the 3D version of the respective 2D structures: the rod and the lamellar structures. Inter-
estingly, the rod and lamellar structures, and a phase diagram resembling to the 1M-PFC phase
diagram appear in MD simulations for a Derjaguin-Landau-Verwey-Overbeek (DLVO) type poten-
tial [183] (Figure 10), characteristic to charged colloidal systems. The 1M-PFC model prefers the
formation of the bcc phase near the critical point.

In contrast, the 2M-PFC model by Wu et al. [144], which has been designed to realize fcc
crystallization, suppresses the bcc phase (Figure 11(a)). Remarkably, the 1M-PFC model can be
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Figure 10. (a) Temperature-particle density phase diagram from MD simulations with a DLVO-type potential.
Circles represent the disordered phase, triangles the columnar phase, and squares the lamellar phase. Stars
stand for points, where the free energies of two phases cross. Solid lines are a guide for the eyes. Snapshots
of the (b) triangular rod and (c) lamellar phases. (Reproduced with permission from de Candia et al. [183]
© 2006 by the American Physical Society.)

Figure 11. (a) Single-mode approximations to the phase diagram of the 2M-PFC model in 3D for R1 = 0.
(b) The same for R1 = 0.05. Note the small bcc stability domain near the critical point. (Reproduced with
permission from Wu et al. [144] © 2010 by the American Physical Society.)

obtained as a limiting case of the 2M-PFC approach. Interpolating between the full fcc (R1 = 0)
and the 1M-PFC limits in terms of the parameter R1 leads to the appearance of a bcc stability
domain in the neighborhood of the critical point (Figure 11(b)). (Here R1 is the ratio of the Fourier
amplitudes for the density waves having the second and first neighbour RLVs as wave vector.)
Whether the appearance of the bcc stability domain is accompanied with that of an hcp stability
domain, as seen in the 1M-PFC limit, requires further investigation [71].

The applicability of the EOF-PFC model has been demonstrated for Fe [142]. The free energy
vs. particle density curves for the solid and liquid phases, which were used to determine the
equilibrium conditions at the melting point, are shown in Figure 12. No phase diagram has been
published for this model. It appears that much like the original 1M-PFC model, it prefers bcc
freezing [71].

An attempt to control the preferred crystal structure relies on manipulating the two-particle
direct correlation function so that its peaks prefer the desired structural correlations [146]. The type
of phase diagram accessible for this method and the respective free-energy curves for coexistence
between the bcc and fcc structures are displayed in Figure 13(a). Starting from the observation
that the nonlinearities can stabilize the square lattice [184] so that it coexists with the triangular
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Figure 12. Free-energy density for the liquid (solid) and bcc (dashed) Fe as a function of reduced particle
density in the EOF-PFC model. Crosses denote the equilibrium points obtained by the common tangent
method. (Reproduced with permission from Jaatinen et al. [142] © 2009 by the American Physical Society.)

Figure 13. (a) Phase diagram in the effective temperature σ -mean density n̄-plane for a system whose direct
correlation function was manipulated so that peritectic coexistence between the fcc and bcc structures is
realized. (Reproduced with permission from Greenwood et al. [146] © 2011 by the American Physical
Society.) (b) Free-energy density f vs. average reduced particle density ψ̄ when controlling the crystal
structure via nonlinear resonance. fL denotes the free-energy density of the liquid. The analytical solutions
are plotted as lines, while the numerical simulation results for rolls, squares, hex-1, and hex-2 are plotted as
squares, circles, diamonds, and triangles, respectively. (Reproduced with permission from Wu et al. [147] ©
2010 by Institute of Physics Publishing.)

phase [185], Wu et al. [147] have proposed a method based on nonlinear resonance for construct-
ing PFC models that prefer the desired crystal structure, as they indeed demonstrated for the
square lattice in 2D: the relative free energies of possible competing structures are compared in
Figure 13(b).

Elder et al. [26] have obtained eutectic phase diagrams within the binary generalization of the
1M-PFC model in 2D both numerically and by using the single-mode approximation. Comparable
phase diagrams (Figure 14(a) and (b)) have been reported for triangular phases in 2D, and for the
bcc and fcc phases in 3D, by the phenomenological amplitude equation method [31]. The 3D
extension of the binary 1M-PFC model has been investigated by Tóth et al. [28]. The map of the
thermodynamic driving force for solidification as a function of composition and density of the
initial liquid is shown in Figure 14(c). 3D eutectic solidification to bcc phases of different lattice
constants has indeed been observed in the domain of the largest driving force.
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Figure 14. (a), (b) Reduced temperature �B0 vs. reduced particle density difference ψ phase diagrams for
the two-dimensional triangular system in the amplitude equation formalism. The filled regions correspond to
regions of phase coexistence. (Reproduced with permission from Elder et al. [31] © 2010 by the American
Physical Society.) (c) Colour map for the thermodynamic driving force of eutectic solidification (�ω is
the grand potential density difference relative to the liquid) for the binary 1M-PFC model in 3D [28], as a
function of the chemical composition ψ̂0 and density ψ0. Note that solidification is expected in the region,
where �ω < 0. (Reproduced from Tóth et al. [28] © 2010 by Institute of Physics Publishing.)

Figure 15. Phase diagram for the VPFC model in 2D [Equation (58)] (a) for k0 = 1 [156]. The red solid lines
denote coexistence curves, the green dash-dotted lines envelope the region, where localized and hexagonally
ordered density peaks (bumps) coexist, whereas the blue dashed line indicates the linear stability limit of the
spatially uniform phase. Snapshots of simulations for (b) stripes and (c) hexagonally ordered holes are also
shown. These simulations have been performed for: k0 = 1, β = 0.9, h = 1500, M = 1 (the mobility in the
EOM) and (b) ψ0 = 0.4 and (c) ψ0 = 0.53. (Reproduced from Robbins et al. [156] © 2012 by the American
Physical Society.)

An essential question is how to extend the PFC framework to accommodate the physical
properties of real alloys of different crystalline structures. A two-phase binary extension of the
EOF-PFC model based on the 1M-PFC and 2M-PFC concepts might be worth exploring.

The VPFC extension of the 1M-PFC model leads to a restructured phase diagram
(Figure 15) [156], whose central region contains stability domains for the 2D hexagonal crystal
and localized density peaks (“bumps”) that represent individual particles.

3.2.2. Phase diagram of two-dimensional liquid crystals

For liquid crystalline systems, there are much more candidates for possible bulk phases. Therefore
the topology of the bulk phase diagram is getting more complex. Recently, bulk phase dia-
grams were computed by using the two-dimensional apolar PFC model of Löwen [67]. After
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an appropriate scaling in energy and length, this model reads as

F[ψ , Qij] =
∫

dr

(
−ψ3

3
+ ψ4

6
+ (ψ − 1)

ψQ2
ij

4
+ Q2

ijQ
2
kl

64
+ A1ψ

2 + A2ψ(∂2
k + ∂2

k ∂2
l )ψ

+ B3(∂iψ)(∂jQij) + D1Q2
ij + D2(∂jQij)

2

)
. (116)

Some trends of the phase diagram can directly be read of Equation (116). Since the parameter
D1 controls the contribution of the nematic tensor Qij(r) and therefore also of the nematic order
parameter S(r), the nematic phase can be expected to be stable for large negative values of D1. In the
opposite case, if D1 is large enough and positive, the term D1Q2

ij(r) + Q2
ij(r)Q

2
kl(r)/64 dominates

the free energy and only phases with Qij(r) ∝ S(r) = 0 can be stable. Crystalline phases with a
non-vanishing nematic order can therefore only appear in a region around D1 = 0. From previous
work it is known that the difference A1 − A2/4 has a big influence on the translational density field
ψ(r) [26,69]. If the parameter A1 is large and positive, variations of the translational density field
enlarge the free energy. Similarly, gradients of the translational density field enlarge the free energy
for large and negative values of A2. Therefore, phases without any density modulations, that is,
the isotropic and the nematic phase, are preferred for positive values of the difference A1 − A2/4,
while all other phases with a periodic translational density field are preferred for negative values
of this difference. Furthermore, there is a symmetry concerning the reversal of the sign of the
parameter B3 in the free-energy functional. From Equation (116) follows directly, that the free-
energy functional is invariant under a simultaneous change of the signs of the parameter B3 and
the nematic order-parameter field S(r). Due to this symmetry, B3 � 0 can be assumed without
loss of generality.

Depending on the coupling parameters, a wealth of different stable liquid crystalline phases was
found (Figure 16). They include an isotropic phase, which has no translational and no orientational
ordering (ψ(r) = 0 and S(r) = 0), a nematic phase with pure orientational ordering (ψ(r) = 0
and S(r) > 0), a columnar phase (or equivalently a smectic A phase), where the translational
density and the orientation show a one-dimensional undulation, and various plastic crystals. In
the columnar/smectic A phase the system has positional ordering in one direction, while it is
isotropic perpendicular to this direction. The nematic order-parameter field S(r) for this phase has
a similar profile to the reduced translational density field ψ(r) with maxima of these two fields
at the same positions. Near the maxima of the translational density ψ(r), the director field n̂(r)
is preferentially parallel to the gradient ∂iψ(r), while it is perpendicular to ∂iψ(r) around the
minima of ψ(r). A similar flipping of the orientational field from perpendicular to parallel to the
stripe direction was identified as transverse intralayer order in the three-dimensional smectic A
phase of hard spherocylinders [118].

Plastic crystals are two-dimensional modulations of the translational density and have no global
(averaged) orientational direction. Interestingly, depending on the coupling-parameter combina-
tions, three different types of plastic crystals are stable including two-dimensional triangular,
square, and honeycomb lattices for the translational ordering. The orientational field of plastic
crystals is schematically shown in Figure 17. It exhibits an interesting defect structure in the
orientation. There are defects at the density peaks and in the interstitial places of the lattice. The
defect structure has not yet been explored so far outside the PFC-world. It can be confirmed in
microscopic computer simulations [186] or in real-space experiments [187–189].

In a two-dimensional slice of the coupling parameter space, the phase diagram is shown
in Figure 18. Apart from the isotropic phase with ψ(r) = 0 and S(r) = 0, which appears for
A1 > A2/4 and D1 > 0, for negative and large D1 a nematic phase is stable. A rich topology occurs
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Figure 16. Stable liquid crystalline phases. The contour plots show the order-parameter fields ψ(r) and S(r)
in the x1-x2-plane for the isotropic and nematic phases, the stripe phase and columnar/smectic A phase, two
plastic triangular crystals with different orientational ordering, and a plastic honeycomb crystal as well as a
plastic square crystal. The black lines in the plots of the second and fourth column represent the director field
n̂(r). In the plots with S(r) = 0, the director field is not shown because it is not defined. The parameters are
A2 = 14, D2 = 8, and B3 = 0 for the stripe phase and the plastic triangular crystal 1 and A2 = 14, D2 = 0.8,
and B3 = −4 for all other phases. (Reproduced from Achim et al. [69] © 2011 by the American Physical
Society.)

around D1 = 0 including columnar phases and three different plastic crystals. However, one should
bear in mind that the phase transitions shown in Figure 18 were assumed to be isochoric, that is,
without any density jump. While this is in general a good approximation for liquid crystalline
phase transitions, it is not true in general. Independent of the particular value of the parameter
B3, the phase transition between the isotropic and the nematic phase is continuous, while all other
phase transitions are discontinuous.

In conclusion, rich phase diagrams with novel liquid crystalline phases were found in the apolar
PFC model. This gives confidence that in a further step interfaces between coexisting phases and
the dynamics can be explored on the basis of the PFC approach. It would open the way of PFC
models to enter into the rich world of liquid crystals.
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(a)

(b)

(c)

(b)
(d)

(a)

Figure 17. Topological defects in three different plastic liquid crystals in the x1-x2-plane (schematic). The
defects coincide with the maxima (red discs) and minima (cyan discs) of the translational density field
ψ(r). The symbols in the plots represent the following defects: (a) vortices with the topological winding
number m = 1, (b) disclinations with m = −1/2, (c) sources/sinks with m = 1, and (d) hyperbolic points
with m = −1. (Reproduced from Achim et al. [69] © 2011 by the American Physical Society.)
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Figure 18. Phase diagrams for the parameters A2 = 14 and D2 = 0.8. The relevant liquid crystalline phases
are isotropic (blue), nematic (green), stripes (yellow), columnar/smectic A (C/SA, light orange), plastic
triangular crystals (magenta), plastic honeycomb crystal (PHC, dark purple), and plastic square crystal (PSC,
red). The cornered separation lines between different phases are due to the finite numerical resolution of the
parameter space. (Reproduced from Achim et al. [69] © 2011 by the American Physical Society.)

3.3. Anisotropies in the PFC models

One of the most attractive features of the PFC-type models is that the anisotropies for various
physical properties follow directly from the crystal structure. The anisotropy of the interfacial free
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energy has been addressed theoretically and numerically by several authors [33,40–44], whereas
the growth anisotropy has been evaluated numerically in 3D [42].

3.3.1. Free energy of the liquid-solid interface

3.3.1.1 Numerical results. Backofen and Voigt [43] have determined the anisotropy of the
crystal-liquid interfacial free energy for small 2D clusters from simulations performed using
the 1M-PFC model. They have observed a strong dependence of the interfacial free energy on
the distance from the critical point. The results have been fitted with the formula of Stashevich
et al. [190] from low temperature expansion. Remarkably, the anisotropy shows strong size-
dependence, when reducing the cluster size to a few particles. Comparable results have been
obtained by Gránásy et al. [33,38] for the equilibrium shapes in a broader reduced temperature
range (Figure 19). Tóth et al. [28] evaluated the free energy and thickness of flat interfaces as
a function of ε via solving the ELE for the equilibrium (101̄) triangular crystal-liquid interface,
and have shown that mean-field critical exponents apply. A similar approach has been applied in
3D for a large number of orientations of the flat bcc-liquid interface forming at ε = 0.3748. The
orientation dependence of the interfacial free energy and the respective Wulff plot are presented
in Figure 20 [44]. Apparently, the rhombic-dodecahedral equilibrium shape [42] obtained from
simulations performed using the EOM for the same ε has been a growth form. It became also
evident that the usual cubic harmonic expansion is not sufficient for reproducing reasonably the
anisotropy even if terms up to seventh order are considered.

3.3.1.2 Analytical results. Wu and Karma [40] have used multi-scale analysis close to the
critical point (0 < ε 	 1) to evaluate the anisotropy of the interfacial fee energy. They have
approximated the EOM of the 1M-PFC model by a set of coupled equations describing the time

Figure 19. Equilibrium shape for the 1M-PFC model as determined by solving the EOM vs. reduced temper-
ature ε in the absence of noise [33]. (a) - (h): ε = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.325, and 0.35. Note that
the interface thickness decreases while the anisotropy increases with an increasing distance from the critical
point. The computations have been performed on a 1024 × 1024 rectangular grid (the upper right quarter
of the simulations is shown), whereas the crystalline fraction was ≈ 0.3. Equilibration has been performed
for a period of 106 dimensionless time steps. Reduced particle density maps are shown. (Reproduced from
Gránásy et al. [33] © 2011 by Taylor & Francis.)
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Figure 20. Anisotropy of the bcc-liquid interfacial free energy at ε = 0.3748 evaluated numerically for the
single-component 1M-PFC model and the respective equilibrium shapes [44]. (a) Gamma plot. Dark dots
(red online) represent the directions for which the interfacial free energy has been evaluated. The surface is
a seventh-order cubic harmonics fit. Heavy dots are on the viewer’s side of the surface. Light dots are on the
other side of the surface. (b) Wulff shape evaluated from the red dots in the gamma plot. (c) The Wulff shape
evaluated from a seventh-order cubic harmonics fit to the gamma plot.

evolution of the amplitudes of the dominant density waves. The analysis of the stationary solution
led to an anisotropy that is independent of the reduced temperature ε. This finding accords with
those of Majaniemi and Provatas [41], who have used a simple coarse-graining technique, the
local volume averaging method, for deriving amplitude equations for liquid–solid interfaces broad
relative to the periodicity of the crystalline phase. In both studies, the temperature-independent
anisotropy is a direct consequence of the approximations that lead to weakly fourth-order amplitude
theories of the Ginzburg-Landau type, in which all material parameters can be scaled out from the
free-energy functional [40,41]. Accordingly, the anisotropy of the interfacial free energy depends
only on the crystal structure. However, this independence of the anisotropy from temperature is
unphysical, as it must vanish when the correlation length (the width of the liquid-solid interface)
diverges in the critical point. In contrast to these phenomenological coarse-graining techniques, the
renormalization-group-based approaches by Athreya et al. [141] lead to higher-order amplitude
equations, from which the temperature cannot be scaled out; that is, a temperature-dependent
anisotropy is expected as found in the virtually exact numerical studies.

3.3.2. Growth anisotropy

Tegze et al. [42] have investigated the growth rate anisotropy in the 1M-PFC model at ε = 0.3748
for freezing to the bcc, hcp, and fcc structures. Diffusion-controlled layerwise crystal growth has
been observed, a mechanism that is consistent with two-dimensional nucleation. The predicted
growth anisotropies were found to decrease with increasing thermodynamic driving force (or
velocity) consistently with kinetic roughening expected on the basis of 1M-PFC simulations
performed in 2D [38].

3.4. Glass formation

One of the most intriguing phenomena that may happen during solidification is glass formation, a
process by which the undercooled liquid is transformed into an amorphous solid.An early 1M-PFC
study for single-component system by Berry et al. [46] relying on conservative overdamped
dynamics indicated a first-order phase transition for this phase change, whereas the amorphous
structure resembled closely to the glass structure obtained by embedded-atom-potential (EAP)
MD simulations for glassy Fe or Ni [191,192]. These findings have been confirmed for the 1M-
PFC model by Tóth et al. [151] and for the EOF-PFC model fitted to Fe by Tóth et al. [28] and
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Gránásy et al. [33]. In a more recent study, Berry and Grant [47] have addressed glass formation
in the framework of the monatomic and binary versions of the VPFC model with equation(s)
of motion like Equation (64) considering inertia and damping. They have shown that important
aspects of glass formation can be reproduced over multiple time scales, including the agreement
with mode-coupling theory (MCT) for underdamped liquids at low undercoolings and a rapidly
growing dynamic correlation length that can be associated with a fragile behaviour. It appears
that in the original PFC model glass formation takes place via a first-order phase transition, while
the monatomic VPFC model behaves like poor glass formers, whereas the binary VPFC model
displays features consistent with good glass formers.

3.5. Phase-field-crystal modelling of foams

Working at extreme distances from the critical point, Guttenberg et al. [70] have shown that the
1M-PFC model can be used to describe the formation of foams. Under such conditions, the free
energy of the periodic phases exceeds that for a mixture of two immiscible liquids – a situation
that leads to the appearance of a foam-like structure coarsening with time. Starting from this
observation, the authors present a simple PFC-type continuum scalar theory of wet and dry foams
(Figure 21).

3.6. Coupling to hydrodynamics

An interesting approach has been brought forward recently by Ramos et al. in reference [54]. It
couples the PFC dynamics of the form of Equation (1) to a Stokes-type dynamics as well as to an
external pinning potential. The general set of equations the authors arrive at is given by

∂ρ

∂t
= −∇rg ,

∂gi

∂t
= −ρ∂i

δHint

δρ
+ ρfi − ηgi + νi ,

(117)

where the specific configurational energy contribution Hint needs to be specified depending on the
system. Assuming a periodic system, it is specified in reference [54] as

Hint =
∫
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4
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)
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In Equations (117), ρ(r) and g(r) refer to particle and momentum density, respectively. Moreover,
fi denotes the components of an external force vector and νi(r, t) denotes noise components.
Furthermore, η is a dissipative coefficient and Up accounts for the pinning potential.

Figure 21. Foam structures predicted by the MPFC model. (a) Coexisting atoms and large cell foam. (b)
Dry foam with no residual atoms. (c) Wet foam with circular bubbles. (Reproduced with permission from
Guttenberg et al. [70] © 2010 by the American Physical Society.)
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Even if at first glance, the coupled set of Equations (117) looks like a first step towards cou-
pling of the PFC model based on Equation (1) to a full Navier–Stokes (NS) type equation and
thus to hydrodynamic motion, a respective extension of Equations (117) is not straightforward
due to the simple relation between particle density ρ(r) and momentum density g(r) assumed.
Thus instead of providing a step towards an extension of PFC models towards hydrodynamics,
Equations (117) rather provide a general framework for the inclusion of inertia effects in PFC
models. The latter issue has also been addressed in references [55,56,138], where it was shown
that the consideration of inertia terms allows to include fast degrees of freedom into the PFC
approach. Furthermore, the authors of reference [138] have shown that inclusion of such fast
degrees of freedom yields a two-stage relaxation process of the system. Chen et al. proved the
thermodynamic consistency of such models with fast degrees of freedom [193]. Thereby, these
authors validated from the viewpoint of thermodynamic theory that such a two-stage relaxation
process can truly be regarded as an important qualitative feature of non-equilibrium pattern forma-
tion in periodic systems. To do so, they developed a unified thermodynamic framework applying
to both conventional PF models and PFC models with slow and fast degrees of freedom. Based on
this framework it is now possible to validate also PFC models based on their thermodynamic con-
sistency, as done previously in numerous cases for PF models (see reference [194] for examples).
Experimental evidence of inertia contributions to the dynamics of a nonlinear system in the form
described by the PFC model with fast degrees of freedom can indeed be found for example in rapid
solidification [138].

The coupling of PFC models to hydrodynamics, though, is still an open issue. It makes sense
to distinguish two cases:

Case (a): Liquid-solid systems as, for example, solidifying alloys, where hydrodynamic trans-
port takes place in only the liquid phase. This implies that such systems can be treated in a
multi-scale approach, where the PFC equation for the atomic scale dynamics in the interior of the
solid is coupled to the long-range transport processes in the exterior, which – to be numerically
efficient – couple only to the amplitude equation of the PFC equation. The reason is that in the
case of PFC models it is the amplitude equation, which distinguishes between solid and liquid.
Such amplitude equation approaches have been derived and solved numerically as computationally
efficient representatives of PFC models, for example, for diffusion limited polycrystalline grain
growth [20] based on renormalization group techniques (see Section 3.1.5.1 for details). Since
renormalization for PFC models of Equation (1) type does not directly yield NS-type equations
and thus a coupling to hydrodynamics exploiting the above multi-scale idea, this is still an open
issue.

Case (b): This case differs from the above picture in that it applies to systems, for which inter-
atomic respectively intermolecular fluidic motion needs to be taken into account as, for example,
in polymers. Then one would desire a PFC model, where the PFC equation itself is directly cou-
pled to a NS-type equation. A first step in that direction was done by Praetorius et al. [195]. They
developed a PFC model with an advective term to simulate particles in a flowing solvent. To do
so they followed the same route as Rauscher et al. [196] and Penna et al. [197] to derive a DDFT
model for such systems, and approximated the latter further based on the Ramakrishnan–Yussouff
approximation [94]. Strictly speaking the resulting PFC model applies only to potential flows.
Furthermore, the coupling of the PFC variable ψ into the dynamic equations for the hydrody-
namic field is constructed simply based on numerical arguments. More rigorous generalizations
of these studies might require additional physically motivated coupling terms, as demonstrated
for hydrogels in terms of the derivation of the corresponding PF model in reference [198] (see
Section 5.2 for details).

Just as in the PF case, one can expect efficient further advance of PFC models in the future.
Progress will result from physical modelling concepts based upon the classical routes to patterned
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nonlinear systems [1], analytical mathematical expansion techniques as the renormalization group
approach (see Section 3.1.5.1 for details), and advanced numerical approaches [195,199] in close
comparison to experimental techniques.

4. Phase-field-crystal models applied to nucleation and pattern formation in metals

As pointed out in reference [71], crystal nucleation can be handled in two different ways within
the framework of PFC models [28,33,35]: (i) via finding the properties of the critical fluctuations
(nuclei) by solving the ELE under appropriate boundary conditions (zero field gradients at the
centre and unperturbed liquid phase in the far field), whose solution represents an extremum
of the free-energy functional; (ii) by adding noise to the EOM. These approaches have their
limitations [71]: (i) is expected to work for small undercoolings, where the individual heterophase
fluctuations do not interact. In addition, it is not immediately straightforward how one should
address possible non-crystalline nucleation precursors. In turn, in the case of (ii) it is not clear
conceptually, which fraction of the thermal fluctuations has already been integrated into the free
energy, and which wavelengths should yet be added as noise to the EOM [104,200,201] – a
question, inherently related to the proper choice of the high frequency cutoff needed to avoid an
ultraviolet catastrophe in 3D [202,203]. Furthermore, the addition of noise to the EOM changes
such properties as the free energy, the phase diagram, and the interfacial properties. In principle, a
correction of this difficulty is possible via parameter renormalization [204,205], however, further
study is needed in the case of PFC models. On the other hand, the original free-energy functional
used in (i) seems to miss the effect of longer wavelength fluctuations, which could move the system
out of a metastable state [71]. Considering these, (i) and (ii) may be regarded as approaches
that provide complementary, though qualitative information of the crystallizing system, which
converge when the amplitude of the noise tends to zero [71].

We note, however, that the results obtained via route (i) are more general than those obtained
from (ii), as they follow directly from the free-energy functional, being therefore independent
of the type of dynamics the EOM defines. Accordingly, results from (i) are valid even in cases,
where the colloid-type diffusive dynamics is not applicable (e.g. metals). In this section, we review
results obtained following route (i) for metals, or when pattern formation is governed by either
chemical ‘or surface diffusion. In turn, results obtained with the single-component PFC models
with overdamped diffusive dynamics will be reviewed in Section 5.1.

4.1. Properties of nuclei from extremum principles

4.1.1. Homogeneous nucleation

Backofen and Voigt [32] have adapted the string method for finding the saddle point of the free-
energy functional, when determining the properties of the critical fluctuations appearing in the
1M-PFC model in 2D. The respective density profiles are displayed in Figure 22. Apparently, there
are no bulk crystal properties at the centre of the smallest nuclei forming at large supersaturations.
Another interesting finding is that the small nuclei are faceted even though the large crystals
are not.

Tóth et al. [28] have solved in 2D the ELE of the 1M-PFC model for the appropriate boundary
conditions (homogeneous supersaturated liquid in the far field) to find the free-energy extrema for
faceted clusters far from the critical point (ε = 0.5), where even the large crystals are inherently
faceted. Under such conditions, the free-energy surface has many local minima [28,155] that map
out the shape of the free-energy barrier for nucleation as a function of cluster size (Figure 23(a)).
It has also been reported that the effective interfacial free energy deduced from the barrier height
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Figure 22. Particle density profiles for the critical fluctuations forming at different supersaturations (supersat-
uration decreases from a to f), as obtained by the adaptation of the string method for determining the extrema
of the free-energy functional in the 1M-PFC model in 2D. (Reproduced with permission from Backofen and
Voigt [32] © 2010 by Institute of Physics Publishing.)

Figure 23. Nucleation barrier vs. size relationship obtained by solving the ELE for faceted nuclei (ε = 0.5)
for the 1M-PFC model [28] in 2D: (a) homogeneous crystal nuclei for ψn

0 = −0.5134 + 0.0134/2n, where
n = 0, 1, 2, . . . , 7, respectively. (b) Heterogeneous crystal nuclei for ψn

0 = −0.5139 + 0.002/2n, where
n = 0, 1, 2, . . . , 7, respectively. The lattice constant of the substrate is equal to the interparticle distance
in the triangular crystal. Note the substantial reduction of the nucleation barrier, a monolayer adsorption
layer, and the contact angle of 60◦ determined by the crystal structure. (Reproduced from Tóth et al. [28] ©
2010 by Institute of Physics Publishing.)

using the hexagonal classical cluster model (valid owing to the interface sharp on the atomic scale)
converges towards the free energy of the planar interface as the supersaturation decreases [28].

Tóth et al. [28] have performed a similar ELE analysis in 3D to study for heterophase fluc-
tuations forming in the 1M-PFC model. They have evaluated the properties of crystal nuclei for
bcc and fcc structures. It has been found that under the investigated conditions both the nucle-
ation barrier and the driving force are fairly close for these structures, indicating comparable
interfacial free energies and also Turnbull’s coefficient9 for the bcc and fcc structures under con-
ditions (ε = 0.3748), where the thermodynamic properties of the crystalline phases are rather
close [42]. This seems to contradict recent results from MD simulations performed using the EAP
method [206]. It is worth noting, however, that Turnbull’s coefficient varies with the type of inter-
action potential. For example, it is ≈ 0.55 for EAP metals of fcc structure [206], whereas ≈ 0.36
has been deduced for the fcc Lennard-Jones (LJ) system [207].
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4.1.2. Heterogeneous nucleation

The height of the nucleation barrier is often reduced by heterogeneities (walls, floating particles,
templates, etc.), a phenomenon termed heterogeneous nucleation [208]. The efficiency of the
heterogeneities in instigating freezing is influenced by a range of microscopic properties, such as
crystal structure, lattice mismatch, surface roughness, adsorption, etc., which are often condensed
into the contact angle used in the classical theory and coarse-grained continuum models. The
atomic scale characteristics of the substrate surface, especially the lattice mismatch, are crucial
from the viewpoint of the highly successful free-growth-limited model of particle-induced freezing
by Greer and co-workers [208,209] – a model in which cylindrical particles, whose circular faces
(of radius R) are ideally wet by the crystal, remain dormant during cooling until the radius of
the homogeneous nuclei becomes smaller than R and free growth sets in. The PFC models are
especially suitable to investigate such problems as they work on the diffusive time scale [12] and
can handle systems containing as many as 2.4 × 107 atoms [28].

Along this line, Tóth et al. [28] used a periodic external potential to incorporate a crystalline
substrate into the ELE method for determining the properties of faceted heterogeneous nuclei.
They have observed the adsorption of a monolayer of particles on the surface of substrate that
reduced the formation energy of nuclei substantially and lead to a contact angle of 60◦ determined
by the crystal structure (Figure 23(b)). In a more recent ELE study, Tóth et al. [151] have shown
for the 1M-PFC model in 2D that the contact angle, the thickness of the crystal layer adsorbed
on the substrate, and the height of the nucleation barrier vary non-monotonically with the lattice
constant of a square-lattice substrate (Figure 24). They have also proven in 2D and 3D that the
free-growth-limited model of particle-induced freezing by Greer et al. [208,209] is valid for larger
nanoparticles and a small anisotropy of the interfacial free energy (Figure 25). Faceting due to
either the small size of the foreign particle or a high anisotropy of the free energy of the liquid-solid
interfacial free energy decouples free growth from the critical size of homogeneous nuclei.

4.2. Pattern formation

As pointed out in reference [71], owing to the overdamped diffusive dynamics most of the PFC
models assume, diffusional instabilities that lead to fingering of the propagating crystal front are
inherently incorporated. In the case of a single-component PFC model, diffusive dynamics means
that as the growing crystal (of larger particle density than the liquid) consumes the particles in
the adjacent liquid, the only way they can be replenished is via long-range diffusion from the

Figure 24. Heterogeneous crystal nucleation at a wall in 2D from solving the ELE [151]: (a), (b) typical
(non-faceted) nuclei obtained for ε = 0.25,ψ0 = −0.341, while the ratio of the lattice constant of the substrate
and the particle diameter is as/σ = 1.49 and 2.0, respectively, whereas the crystal orientations (112̄) and
(011̄) are parallel with the wall. The intersection of the circular and linear fits (white lines) to the contour
line (green online, light grey in print) defines the contact angle. (c) Contact angle vs. as/σ for ε = 0.25 and
ψ0 = −0.341. The full symbols indicate the states corresponding to panels (a) and (b). (Reproduced from
Tóth et al. [151] © 2012 by the American Physical Society.)
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Figure 25. Free-growth limited bcc crystallization in 3D on a cube of sc structure as pre-
dicted by the ELE within the 1M-PFC model [151]. Here, ε = 0.25 and from left to right
ψ0 = −0.3538, −0.3516, −0.3504, −0.3489, −0.3482, and −0.3480, respectively. The linear size of the
substrate is Ls = 16abcc, while abcc is the lattice constant of the stable bcc structure. Spheres centred on
density peaks are shown, whose size increases with the height of the peak. Colour varies with peak height,
interpolating between dark grey (red online) (minimum height) and light grey (maximum height). The ELE
has been solved on a 256 × 256 × 256 grid. (Reproduced from Tóth et al. [151] © 2012 by the American
Physical Society.)

bulk liquid. Accordingly, a depletion zone forms ahead of the growing crystal [28,38,42,210].
This resembles the behaviour of colloidal suspensions, in which the micron-sized colloid particles
move by Brownian motion in the carrier fluid. Relying on this similarity, the single-component
PFC models can be considered as reasonable tools to address colloidal crystal aggregation [71].
One may, however, get rid of this type of mass-diffusion-controlled dynamics when driving the
system strongly enough for a diffusion-controlled to diffusionless transition [38]. These phe-
nomena are not necessarily present in the phenomenological coarse-grained PFC models, where
the change in density upon crystallization is not always taken into account – models that might
be considered, therefore, as a reasonable description of metallic alloys. Diffusive dynamics is
furthermore appropriate on the surface of substrates, where the adsorbed particles indeed move
by diffusion in a periodic potential. 2D PFC models relying on the interplay of the interparticle
forces and a periodic external potential representing the symmetries of the substrate can be used
to capture pattern formation on such surfaces.

4.2.1. PFC modelling of surface patterns

A combination of computer simulations with the solution of amplitude equations for PFC models
equipped with periodic potentials has been used to investigate a range of surface phenomena
including incommensurate to commensurate transitions for triangular surface layers on a square-
lattice substrate [55–57], the deposition of monolayers on quasi-crystalline substrates [50,58],
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sliding friction [54,56], and the formation of quantum dots/islands on nanomembranes [53,211]
(Figure 26).

Muralidharan and Haataja [48] have extended the PFC model for describing stress-induced
alloying of bulk-immiscible binary systems on a substrate by adding a potential energy term
describing the substrate and a regular solution term. Fixing the model parameters to data
for CoAg/Ru(0001), they demonstrated that the model captures experimentally observed mor-
phologies. A sequential application of this model has been employed for addressing multilayer
growth on crystalline and quasi-crystalline substrates [50]. A similar approach has been pro-
posed by Elder et al. [49] using amplitude equations that allow large-scale simulations for
stress-induced alloying in heteroepitaxial overlayers. Quantitative predictions, that are in an
excellent agreement with experiments, have been obtained for the stripe, honeycomb, and tri-
angular superstructures emerging in the metal/metal systems, Cu on Ru(0001) and Cu on Pd(111)
(Figure 27).

Figure 26. Growth of an island on a nanomembrane of approximately 30 atomic layers thickness at times
(a) t = 60,000, (b) t = 80,000, (c) t = 400,000 as predicted by the amplitude equations of reference [53].
Similar to Figure 9, the left, middle, and right columns correspond to the results of the total particle density, the
difference of the particle densities for the two components, and the local free-energy density, respectively.
Also for clarity, the particle density images have been expanded by a factor of two. (Reproduced with
permission from Elder and Huang [53] © 2010 by Institute of Physics Publishing.)
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Figure 27. Surface patterns the amplitude equations predict for a decreasing dimensionless coupling u0
between the layer and the substrate [49]. From left to right: u0 = 12.1 × 10−3, 3.2 × 10−3, and 0.87 × 10−3,
respectively. Colouring: fcc domains are dark grey (blue online), hcp domains are medium grey (red online),
and the domain walls are light grey (green online). (Reproduced with permission from Elder et al. [49] ©
2012 by the American Physical Society.)

4.2.2. Pattern formation during binary solidification

4.2.2.1 Dendritic freezing. The possibility of growing solutal dendrites has been first addressed
within numerical 1M-PFC simulations by Elder et al. [26]. Studies of the transformation kinetics
for many particles including several dendrites have been performed using the same approach by
Pusztai et al. [27] for system sizes containing about 1.6 × 106 atoms (Figure 28). Tegze [29]
has investigated the behaviour of solutal dendrites using binary 1M-PFC simulations of similar
size. With increasing driving force obtained by increasing the total number density, transitions
from dendritic needle crystals to compact hexagon shape crystals have been observed as in the
conventional PF models (Figure 29). It has also been shown that (i) a steady state tip velocity is
attained after a time, and (ii) tip oscillations do not occur, that is, from the viewpoint of side branch
formation the dendrite tip works like a selective amplifier of the fluctuations at the tip (Figure 30).

4.2.2.2 Eutectic solidification. Eutectic solidification in binary 1M-PFC simulations has been
first observed in 2D in the seminal paper by Elder et al. [26]. The formation of lamellar eutectic
grains has been explored by Elder et al. [31] using and approach based on amplitude equations
(Figure 31). For the relatively large lattice mismatch they assumed for the two crystalline phases
(8.4% in equilibrium), spontaneous nucleation of dislocations at the lamellar interfaces has been
observed – a phenomenon expected to modify the spacing selection mechanism predicted by earlier

Figure 28. Growth of five dendrites in the binary PFC model (the distribution of the field ψ̂ is shown).
The snapshots taken at 1000, 5000, 10,000 and 20,000 time steps are shown. The simulations have been
performed on a 16384 × 16384 grid, using a semi-implicit spectral method [177]. (Reproduced from Pusztai
et al. [27] © 2008 by Institute of Physics Publishing.)
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Figure 29. Morphological transition from dendritic needle crystals to compact hexagonal shape with
increasing driving force for crystallization [29]. Conditions/properties are as described for dendrites in
reference [177] except that the initial total number densities are ψ0 = 0.009, 0.0092, 0.0094, 0.0096, and
0.0098 (from left to right). The reduced number density ψ̂ is shown. Note the reducing contrast of the images
from left to right indicating an increasing solute trapping. A 8192 × 8192 grid has been used. (Reproduced
from Tegze [29]).

Figure 30. Analysis of a solutal dendrite grown in the binary 1M-PFC model [29]. The dendrite arms are
numbered clockwise from the top arm. Apparently, there are no tip radius or velocity oscillations and steady
state growth is reached after ≈ 4000 time steps.A 8192 × 8192 grid has been used and ψ0 = 0.0092, whereas
other conditions as for Figure 25 are present. (Reproduced from Tegze [29]).

eutectic solidification theories. Larger-scale binary 1M-PFC simulations relying on a numerical
solution of the EOMs (73) and (74) in 2D imply that owing to the diffusive dynamics of the
total particle density in the binary 1M-PFC model, eutectic colonies may form even in binary
systems [28] (Figure 32). Here, the morphological change occurs as a result of the diffusional
instability emerging from the diffusive EOM, many of the PFC models assume. Using the same
approach in 3D, eutectic crystallization to the bcc structure has been reported by Tóth et al. [28]
(Figure 33). These atomistic simulations indicate a remarkable time evolution of the eutectic
pattern after solidification.

4.3. Phenomena in the solid state

One of the most successful areas, where the PFC models make a real difference is the modelling
of solid state transitions including grain-boundary dynamics, melting, crack formation, stress-
induced morphology evolution, and the modelling of the Kirkendall effect, to mention a few.
This follows from the fact that, working on the atomistic scale, the PFC methods incorporate the
dislocations inherently. In contrast, the coarse-grained continuum approaches model dislocation
dynamics via their energetic contribution. The PF models following the seminal work of Chen
et al. [212,213] integrate microelasticity into the PF formalism [214], enabling thus the descrip-
tion of coherent martensitic transformations in single [215] and polycrystalline systems [216].
This PF methodology of dislocation kinetics has been developed consecutively in a series of arti-
cles [217–220]. A versatile and numerically efficient microelastic PF model has been put forward
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Figure 31. Time evolution of equiaxed eutectic solidification within the amplitude equation formalism pro-
posed by Elder et al. [31]. Panels (a), (b), and (c) correspond to dimensionless times 30, 000, 60, 000, and
105, 000, respectively. From left to right the columns display the reduced total number density in the boxed
region, the coarse-grained number density, the reduced difference of the number densities for the two species,
and the local free-energy density. Dislocations appear as small black dots in the local free-energy density.
(Reproduced with permission from Elder et al. [31] © 2010 by the American Physical Society.).

Figure 32. Snapshots of eutectic solidification on the atomistic scale in the binary 1M-PFC model in 2D [28]:
composition ψ̂ maps corresponding to 2 × 105, 6 × 105, and 106 time steps are shown. White and black
denote the two crystalline phases, while grey (orange online) stands for the liquid phase. The simulation
has been performed on a 2048 × 1024 rectangular grid. Crystallization has been started by placing a row
of supercritical crystalline clusters of alternating composition into the simulation window. Interestingly, the
eutectic pattern evolves inside the solid region on a timescale comparable to the timescale of solidification.
(Reproduced from Tóth et al. [28] © 2010 by Institute of Physics Publishing.)

recently [214]. It relies on a dislocation density field whose evolution follows an advanced con-
stitutive model of plastic slip from micromechanics [221–223]. Although the micromechanical
PF models have successfully addressed various phenomena associated with dislocation dynamics,
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Figure 33. Snapshots of eutectic solidification as predicted by the binary 1M-PFC model in 3D [28]: time
elapses from left to right. The simulation has been performed on a 450 × 300 × 300 rectangular grid. Solidi-
fication has been started by placing two touching supercritical bcc clusters of different compositions into the
simulation window. Remarkably, the nanoscale solid-phase eutectic pattern roughens on a timescale compa-
rable to the time of solidification. Brown and grey colours denote the terminal solutions of the two crystalline
phases. Spheres of size reflecting the height ψ of the total number density peak and coloured according to
the local composition ψ̂ are centred to the particle density maxima. Only half of the simulation window is
shown. (Reproduced from Tóth et al. [28] © 2010 by Institute of Physics Publishing.)

the atomistic approach the PFC models realize offers a more detailed description as illustrated in
the following.

4.3.1. Dislocation dynamics and grain-boundary melting

Already the first paper on the PFC method [12,59] has addressed grain boundaries and shown that
the model automatically recovers the Read-Shockley relationship between grain-boundary energy
and misorientation (Figure 34). It has also been shown that PFC models are ideal for modelling
grain-boundary dynamics [12,59] (Figure 34) and offers the possibility to link mechanical prop-
erties with the grain structure [59]. Two mechanisms of dislocation glide have been observed: for
high strain rates, continuous glide is observed, while at the lower strain rate, the dislocation set
into a stick-slip motion [61]. Grain rotation and the associated grain-boundary motion have been
addressed in detail by Wu and Voorhees [224]. While observing classical linear area-shrinkage in
time for large and small grain misorientations, they report non-classical dynamics for intermediate
initial grain misorientations, a phenomenon associated with specific rearrangement of dislocations
during shrinkage. Grain-boundary melting has been addressed in several works [36,37,180]. It has

Figure 34. PFC modelling of defect and pattern formation in solids. From left to right: (a) grain-boundary
energy vs. Read-Shockley relationship and (b) grain-boundary dynamics. (Reproduced with permission from
Elder and Grant [59] © 2004 by the American Physical Society.) (c) Grain-boundary melting at a large-angle
grain boundary. (Reproduced with permission from Mellenthin et al. [37] © 2008 by the American Physical
Society.)
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been reported that dislocations in low-angle to intermediate-angle grain boundaries melt similarly
until an angle-dependent first-order wetting transition occurs, when neighbouring melted regions
coalesce. In the large-angle limit, the grain-boundary energy becomes increasingly uniform along
its length and can no longer be interpreted in terms of individual dislocations (Figure 34). The
difference between high- and low-angle boundaries appears to be reflected in the dependence of
the disjoining potential on the width of the pre-melted layer w: it is purely repulsive for all widths
for misorientations larger than a critical angle, however, it switches from repulsive at small w to
attractive for large w [37].

4.3.2. Crack formation and propagation

Crack formation and propagation are inherent multiscale problems, since in the vicinity of a crack
tip time and length scales diverge. As outlined in reference [225], on the atomic length scale crack
propagation is understood as a successive breaking of bonds.

Large scale MD simulations up to about 107 atoms allow a deeper insight into the growth
of cracks [226–229]. Although limited to sub-micron samples and very short times, these sim-
ulations are able to reproduce key features of crack propagation like the initial acceleration and
the onset of instabilities. The predictions, however, depend significantly on the employed model
potentials [229,230].

Continuum descriptions of fracture offer a complementary view on the experimentally relevant
length and time scales [225]. In the classical theory of macroscopic fracture, the crack is represented
by a mathematical cut with no internal dimension, that is, a single crack is described by its tip-
velocity and its path [231]. This of course neglects atomistic effects such as roughening of the
crack surfaces.

The PFC models provide yet an another atomistic approach, however, on a time scale consid-
erably longer than that of the MD simulations. Elder and Grant [59] have demonstrated that the
1M-PFC model can be used to model crack propagation. A small notch cut out of a defect-free
crystal placed under 10% strain in the vertical direction and filled with coexisting liquid has been
used as a nucleation cite for crack propagation. Snapshots of crack development are shown in
Figure 35.

Figure 35. Crack formation (left) and strain-induced epitaxial islands (right) in the single-component
1M-PFC model. (a), (b) Snapshots of the energy density map taken at dimensionless times 25, 000 and
65, 000. (Reproduced with permission from Elder and Grant [59] © 2004 by the American Physical Society.)
(c) Grey scale image of epitaxial islands in an 1M-PFC simulation for a 4.8% tensile film. (Reproduced with
permission from Huang and Elder [51] © 2008 by the American Physical Society.)
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4.3.3. Strain-induced morphologies

Huang and Elder [51] have studied strain-induced film instability and island formation using
numerical 1M-PFC simulations and amplitude equations (Figure 34). They have identified a linear
regime for the island wave number scaling and recovered the continuum ATG instability in the
weak strain limit. The ATG instability has been studied in 2D by Spatschek and Karma [63]
using a different amplitude equations approach. Qualitatively similar surface roughening has been
reported by Tegze et al. [42] for heteroepitaxial body-centred tetragonal (bct) films grown on sc
crystalline substrates of tuned lattice constant – a phenomenon interpreted in terms of the Mullins-
Sekerka/ATG instability. Wu and Voorhees have shown [232] that the 1M-PFC predictions deviate
from those of the classical sharp interface continuum model when the critical wavelength of the
ATG instability becomes comparable to the interface width. They also report that nonlinear elastic
effects due to large stresses alter the critical wavelength and the morphology of the interface.

4.3.4. Kirkendall effect

Elder et al. [64] have used a simple extension of the binary 1M-PFC model incorporating unequal
atomic mobilities to investigate different aspects of the Kirkendall effect. They have shown that
the model indeed captures such phenomena as crystal (centre-of-mass) motion, pore formation
via vacancy supersaturation, and enhanced vacancy concentration near grain boundaries.

4.3.5. Density/solute trapping

In recent works by Tegze et al. [38,39], it has been reported for the 1M-PFC model (of diffusive
dynamics) that at large ε (= 0.5) and high driving force a transition from diffusion-controlled to dif-
fusionless solidification can be observed, during which the interface thickness increases, whereas
the density difference between the crystal and the liquid decreases drastically (Figure 36). This
“density trapping” phenomenon is analogous to solute trapping observed in rapid solidification
of alloys (where due to a lack of time for partitioning, solids of non-equilibrium compositions
form) and can be fitted reasonably well using the models of Aziz [233] and Jackson et al. [234].
In a very recent work, Humadi et al. [45] have investigated solute trapping in the binary MPFC
model. In agreement with the findings for density trapping, they have found that pure diffusive
dynamics leads to a velocity-dependent partition coefficient that approaches unity for large veloc-
ities – consistently with the model of Aziz and Kaplan [235]. In contrast, the wavelike dynamics,
the second-order time derivatives of the MPFC-type EOMs realize, leads to a solute trapping
behaviour similar to the predictions of Galenko et al. [236].

Figure 36. Density trapping as predicted by the single-component 1M-PFC model [38,39]. (a) Coarse-grained
particle densities ψ̃ for the liquid and solid phases at the growth front as a function of growth velocity v.
(b) Effective partition coefficient k defined using the liquidus and solidus densities vs. growth velocity. For
comparison, fits of the models by Aziz [233] and Jackson et al. [234] are also displayed. (c) Comparison
of the interface thickness d and the diffusion length dD as a function of growth velocity. (Reproduced from
Tegze et al. [38] © 2011 by Royal Society of Chemistry Publishing.)
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Figure 37. VPFC modelling of fluid and crystalline states of different particle densities. The number of atoms
increases from left to right and from top to bottom. (Reproduced with permission from Chan et al. [65] ©
2009 by the American Physical Society.)

4.3.6. Vacancy/atom transport in the VPFC model

The VPFC model by Chan et al. [65] is one of the most exciting extensions of the original PFC
approach. The extra term added to the free energy makes particle density non-negative and allows
for the formation of individual density peaks (“atoms” forming the fluid) and vacancies in the
crystal. This, combined with the MPFC EOM (64), that considers inertia and damping, makes it a
kind of MD-like approach working on a still far longer time scale than the usual MD simulations.
Accordingly, one can obtain configurations that look like snapshots of the fluid state (Figure 37) and
may evaluate the structure factor for the fluid state, which is evidently impossible for the original
PFC model. (Apparently, similar images can be obtained in the 1M-PFC model as a transient
state during solidification [38], however, with different dynamics owing to the differences in free
energy and EOM.)

A comparison with another recent development, termed the diffusive molecular dynamics
(DMD) technique, by Li et al. [237] would be very interesting. The latter approach works on
the diffusive time scale too, while maintaining atomic resolution, by coarse-graining over atomic
vibrations and evolving a smooth site-probability representation.

5. Phase-field-crystal modelling in soft matter physics

5.1. Applications to colloids

In this section, we review results obtained using different PFC models relying on overdamped con-
servative dynamics – a reasonable approximation for colloidal crystal aggregation. We concentrate
on three major areas: crystal nucleation, pattern formation in free growth, and pattern formation
in the presence of external potentials.
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As mentioned previously, using of the EOM for simulating crystallization is not without diffi-
culties. In the DDFT-type models, the system cannot leave a metastable state (e.g. the homogeneous
initial fluid) unless Langevin noise representing thermal fluctuations is added to the EOM. This
raises, however, essential questions: considering the number density an ensemble-averaged quan-
tity, all the fluctuations are (in principle) incorporated into the free-energy functional. Adding
noise to the EOM, a part of the fluctuations might be counted twice [104,200]. If in turn the
number density is viewed as being coarse-grained in time, there is phenomenological motivation
to add a noise term to the EOM [201]. The latter approach is appealing in several ways: crystal
nucleation is feasible from a homogeneous state and capillary waves appear at the crystal-liquid
interface. To investigate how nucleation and growth happen on the atomistic level, a conserved
noise term is usually incorporated into the EOM [Equations (60)–(63)]. To overcome some dif-
ficulties occurring when discretizing the noise [202,203], coloured noise obtained by filtering
out the unphysical short wavelengths smaller than the interparticle distance is often used (this
removes both the ultraviolet catastrophe expected in 3D [238] and the associated dependence
of the results on spatial resolution). The majority of the studies we review below follows this
approach.

5.1.1. Nucleation in colloidal crystal aggregation

5.1.1.1 Homogeneous nucleation. The effect of noise: A systematic study of the effect of the
noise strength on the grain size distribution performed in 2D by Hubert et al. [34] for the original
1M-PFC model implies that the grain size decreases with increasing noise amplitude, resulting
in both a smaller average grain size and a reduced maximum grain size. They have distinguished
two regimes regarding the cluster size distribution: for small noise amplitudes a bimodal cluster
size distribution is observed, whereas for large noise amplitudes a monotonically decreasing
distribution is reported.

Phase selection in 2D and 3D: Mounting evidence indicates that the classical picture of
crystal nucleation, which considers heterophase fluctuations of only the stable phase, is over-
simplified. Early analysis by Alexander and McTague suggests a preference for bcc freezing
in simple liquids [239]. Atomistic simulations for the LJ system have verified that small het-
erophase fluctuations have the metastable bcc structure, and even larger clusters of the stable
fcc structure have a bcc interface layer [240], while the ratio of the two phases can be tuned by
changing the pressure [241]. Composite bcc-fcc nuclei have also been predicted by continuum
models [242]. Two-stage nucleation has been reported in systems that have a metastable critical
point in the undercooled liquid (including solutions of globular proteins [243]); the appearance
of the crystalline phase is assisted by dense liquid droplets, whose formation precedes and helps
crystal nucleation [244]. Recent studies indicate a similar behaviour in simple liquids such as the
LJ [245] or hard-sphere (HS) [246] fluids, where a dense liquid or amorphous precursor assists
crystal nucleation. Analogous behaviour has been reported for colloidal systems in 2D [247] and
3D [248]. These findings imply that the nucleation precursors are fairly common. The 1M-PFC
model has bcc, fcc, and hcp stability domains [28], the appearance of an amorphous phase and
two-step nucleation has also been reported [46], and the 2M-PFC model incorporates the 1M-
PFC model [144]. Accordingly, this class of the dynamic PFC models is especially suitable for
investigating phase selection during freezing of undercooled liquids.

In 2D, it has been shown within the framework of the 1M-PFC model that at relatively small
supersaturations direct crystal nucleation takes place. Increasing the thermodynamic driving force,
first copious crystal nucleation is observed, and at higher driving forces an amorphous precursor
precedes crystalline nucleation [33] (Figures 38 and 39(a)). Similarly to quenching experiments for
two-dimensional colloidal systems [249], no hexatic phase is observed in the 1M-PFC quenching
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Figure 38. Snapshots of early and late stages of isothermal solidification in 1M-PFC quenching simulations
performed in 2D with initial reduced particle densities of ψ0 = −0.55, −0.50, −0.45, −0.40 and −0.35 [33].
(a)–(e): Early stage: the respective reduced times are τ/�τ = 10, 000, 3000, 1500, 1000, and 700. (f)–(j):
Late stage: the same areas are shown at reduced time τ/�τ = 60,000. Reduced particle density maps in
418 × 418 sized fractions of 2048 × 2048 sized simulations are shown. Other simulation parameters were
ε = 0.75 and α = 0.1 (noise strength). (Reproduced from Gránásy et al. [33] © 2011 by Taylor & Francis.)

Figure 39. Structural properties evolving after quenching in 1M-PFC simulations [33]: (a) pair-correlation
function g(r) for the early-stage solidification structures shown in Figure 20(b)–(e). (b) Time evolu-
tion of the bond-order correlation function g6(r) for ψ0 = −0.4 on log–log scale. g6(r) is shown at
τ/�τ = 1000, 4000, 16, 000, and 64, 000. For comparison, the upper envelope expected for the hexatic
phase and the result for a single crystal are also shown. These curves describe an amorphous to polycrys-
talline transition (Figure 20(d) and (i)). Note that the upper envelope of the g6(r) curves decay faster than
expected for the hexatic phase. (Reproduced from Gránásy et al. [33] © 2011 by Taylor & Francis.)

simulations [33,38] [as demonstrated by the form of the radial decay of the bond-order correlation
function [33], see Figure 39(b)].

In 3D, a systematic dynamic study of the 1M/2M-PFC models by Tóth et al. [35] shows that in
these systems the first appearing solid is amorphous, which promotes the nucleation of bcc crystals
(Figure 40) but suppresses the appearance of the fcc and hcp phases. The amorphous phase appears
to coexist with the liquid indicating a first-order phase transition between these phases in agreement
with the observed nucleation of the amorphous state. Independent ELE studies determining the
height of the nucleation barrier have confirmed that density and structural changes take place
on different times scales [35]. This finding suggests that the two time scales are probably present
independently of the type of dynamics assumed. These findings have been associated with features
of the effective interaction potential deduced from the amorphous structure using Schommers’
iterative method [250] that shows a maximum at r0

√
2, where r0 is the radius corresponding to

the main minimum of the potential. Such a maximum in the interaction potential is expected to
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Figure 40. Two-step nucleation in the 1M-PFC model at ψ0 = −0.1667 and ε = 0.25 [35]. Four pairs
of panels are shown, where t indicates the time elapsed, N is the total number of particles, and qi is the
bond orientational order parameter with index i. Left: snapshots of the density distribution taken at the
dimensionless times τ = 57.74t. Spheres of the diameter of the interparticle distance centred on density peaks
higher than a threshold (= 0.15) are shown. They are coloured dark grey (red online) if q4 ∈ [0.02; 0.07] and
q6 ∈ [0.48; 0.52] (bcc-like) and light grey otherwise. Right: population distribution of q6 (histogram painted
similarly) and the time dependence of the fraction X of bcc-like neighbourhoods (solid line). (Reproduced
from Tóth et al. [35] © 2011 by the American Physical Society.)

suppress crystallization to the close-packed structures fcc and hcp [251], whereas the multiple
minima also found are expected to lead to coexisting disordered structures [252]. By combining
the results available for various potentials (LJ [245], HS [246], and the PFC potentials [28,35]),
it appears that a repulsive core suffices for the appearance of a disordered precursor, whereas
the peak at r0

√
2 correlates with the observed suppression of fcc and hcp structures, while the

coexistence of the liquid and amorphous phases seen here can be associated with multiple minima
of the interaction potential.

3D studies, performed for bcc crystal nucleation in molten pure Fe in the framework of the
EOF-PFC model [28,33], lead to similar results, however, still with diffusive dynamics. In these
simulations, the initial density of the liquid has been increased until the solidification started – a
procedure that has lead to an extreme compression owing to the small size and short time accessible
for the simulations. While this raises some doubts regarding the validity of the applied approxi-
mations, the behaviour observed for the EOF-PFC Fe is fully consistent with the results obtained
for the 1M-PFC model: with increasing driving force first an amorphous precursor nucleates and
the bcc phase appears inside these amorphous regions [28,33]. At higher driving forces the amor-
phous precursor appears nearly homogeneously in space and the bcc phase nucleates into it later.
Apparently, direct nucleation of the bcc phase from the liquid phase requires a longer time than
via the amorphous precursor, suggesting that the appearance of the bcc phase is assisted by the
presence of the amorphous phase and in line with recent predictions by DFT [245] and atomistic
simulations [246]. Remarkably, the interaction potential evaluated for Fe from the pair-correlation
function of the amorphous structure is oscillatory and is qualitatively similar to the ones evaluated
from experimental liquid structures [253].

5.1.1.2 Heterogeneous nucleation. Prieler et al. [148] have explored crystal nucleation on an
unstructured hard wall in an anisotropic version of the 1M-PFC model, in which the particles are
assumed to have an ellipsoidal shape. In particular, they have investigated how the contact angle
depends on the orientation of the ellipsoids and the strength of the wall potential (Figure 41).
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Figure 41. Heterogeneous nuclei formed on a hard wall in the APFC model proposed in reference [148] and
the dependence of the left and right side contact angle (γ1 and γ2, respectively) on the crystal orientation.
(Reproduced from Prieler et al. [148] © 2009 by Institute of Physics Publishing.)

A complex behaviour has been observed for the orientational dependence, while increasing the
strength of the wall potential reduced the contact angle.

Gránásy et al. [147] have studied crystal nucleation in an rectangular corner of structured
and unstructured substrates within the 1M-PFC model in 2D. Despite expectations based on the
classical theory of heterogeneous nucleation and conventional PF simulations [254], which predict
that a corner should be a preferred nucleation site, in the atomistic approach such a corner is not a
preferable site for the nucleation of the triangular crystal structure (Figure 42) owing to the misfit of
the triangular crystal structure with a rectangular corner. Crystals of different orientation nucleate
on the two substrate surfaces, which inevitably leads to the formation of a grain boundary starting
from the corner when the two orientations meet. The energy cost of forming the grain boundary

Figure 42. Heterogeneous nucleation in rectangular inner corners of the 1M-PFC model in 2D [33]. (a)
Nucleation on (01) surfaces of a square lattice (ratio of lattice constant of substrate to interparticle distance
a0/σ ≈ 1.39). (b) Nucleation on (11) surfaces of a square lattice. (c) Nucleation on an unstructured substrate.
Note the frustration at the corner and the formation of a grain boundary starting from the corner at later stages.
(Reproduced from Gránásy et al. [33] © 2011 by Taylor & Francis.)
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makes the rectangular corner an unfavoured place for nucleation. In contrast, a 60◦ corner helps
the nucleation of the triangular phase.

5.1.2. Pattern formation in colloidal crystal aggregation

5.1.2.1 Colloid patterns in two dimensions. Using a large value for the parameter ε leading to
a faceted liquid-solid interface, Tegze et al. [38,39] have investigated solidification morphologies
as a function of the thermodynamic driving force. They have found that the diffusion-controlled
growth mode appearing at low driving forces and yielding faceted interfaces changes to a diffu-
sionless growth mode characterized by a diffuse liquid-solid interface, which in turn produces a
crystal, whose density is comparable to the density of the liquid due to the quenched-in vacancies
(Section 4.3.5). It is worth noting that similar growth modes have been observed experimen-
tally in colloidal systems [255]. Tegze et al. have shown [38,39] that the diffusion-controlled
and diffusionless modes can coexist along the perimeter of the same crystal and lead to a
new branching mechanism that differs from the usual diffusional-instability-driven branching
by which dendritic structures form. This new mechanism explains the fractal-like and porous
growth morphologies [256] observed in 2D colloidal systems (Figure 43) and may be relevant for
the diffusion-controlled to diffusionless transition of crystallization in organic glasses [71].

5.1.2.2 Colloid patterns in three dimensions. Tóth et al. [28] have demonstrated first that owing
to the conservative dynamics, the EOM of the 1M-PFC model realizes, dendritic growth forms of
bcc and fcc structure evolve in the single-component theory. Tegze [29] and Gránásy et al. [257]
have shown by simulations containing ≈ 3 × 106 particles that due to a kinetic roughening of the

Figure 43. Single crystal growth morphologies (a)–(d) in the 1M-PFC model [38] (top) and experiment
(bottom) (e)–(h): 2D colloid crystals by Skjeltorp. (Reproduced with permission from Skjeltorp [256] ©
1987 by the American Physical Society.) The driving force increases from left to right. In the case of the
simulations, the coarse-grained particle density map is shown. The fractal dimensions of the single crystal
aggregates evaluated from the slope of the plot log(N) vs. log(Rg) (N is the number of particles in the
cluster and Rg is its radius of gyration) are: (a) fd = 2.012 ± 0.3%, (b) 1.967 ± 0.3%, (c) 1.536 ± 0.9%, (d)
1.895 ± 0.3%. The fast growth mode is recognizable via the lack of a (dark) depletion zone at the interface,
whose presence is indicative to the slow mode. A 2048 × 2048 rectangular grid corresponding to ≈ 13,000
particles, or 118 μm × 118 μm (assuming 1.1 μm particles) has been used – a size comparable to that shown
by the experimental images. (Reproduced from G. Tegze et al. [38] © 2011 by Royal Society of Chemistry
Publishing.)
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crystal-liquid interface that leads to interface broadening, a transition can be seen from faceted
dendrites to compact rounded crystals (Figure 44) – a phenomenon reported earlier in experi-
ments for dendritic growth of NH4Br crystals [258]. Note that such a kinetic effect cannot be
easily incorporated into conventional PF models. Remarkably, as pointed out in reference [28],
assuming a micrometer diameter for the “atoms”, these dendritic structures are comparable in size
to those formed in colloid experiments in microgravity [259]. This is a unique situation indeed:
an “atomistic” theory works here on the size scale of experimental dendrites.

In a recent work, Tang et al. [30] have performed a geometric analysis of bcc and fcc dendrites
grown in the respective stability domains of the 1M-PFC model, and evaluated dynamic exponents
characterizing dendritic growth in the (100), (110), and (111) directions. They associate the

Figure 44. 3D crystal growth morphologies grown from a bcc seed in the single-component 1M-PFC model at
ε = 0.3748 in a system containing about 3 × 106 colloidal particles [29]. The initial fluid density decreases
as (a) ψ0 = −0.015, (b) −0.0175, (c) −0.01875, (d) −0.02, (e) −0.02062, (f) −0.0225, (g) −0.025, (h)
−0.03, (i) −0.0325. The simulations have been performed on a 1024 × 1024 × 1024 grid. Assuming 1 μm
diameter for the particles, the linear size of the simulation box is ≈ 0.16 mm – comparable to the smaller
colloidal dendrites seen in microgravity experiments [259]. (Reproduced from Tegze [29]).
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relatively large values obtained for the stability constant from the geometry of the dendrite tip
with the faceted morphology of the crystals.

5.1.3. Colloid patterning

Colloid patterning under the influence of periodic substrates can be realized via creating patches
that are chemically attractive to the colloidal particles [260]. Depending on the size of the patches
single, double, triple, etc., occupations of the patches are possible (Figure 45), whereas the distance
of the patches may lead to the formation of various ordered patterns, as predicted by Langevin sim-
ulations, in which the patterned substrate is represented by appropriate periodic potentials [261].
Gránásy et al. [33] has employed a 1M-PFC model supplemented with a periodic potential of
circular potential wells arranged on a square lattice, to reproduce the patterns seen in the experi-
ments (Figure 45). Another problem, exemplifying the abilities of PFC simulations in modelling
colloid patterning, is colloidal self-assembly under the effect of capillary-immersion forces acting
on the colloid particles in thin liquid layers due to capillarity and a periodically varying depth
of the liquid layer due to a wavy substrate surface. Experiments of this kind have been used to
produce single and double particle chains [262] and the otherwise unfavourable square-lattice
structure [263]. The capillary-immersion forces can often be well represented by a potential of
the form U = u1 cos(kx), where u1 is a constant, k = 2π/λ, and λ the wavelength of the periodic
potential. Setting λ = σ/

√
2, where σ is the interparticle distance, and varying the orientation of

the grooves relative to the crystallization (drying) front, patterns seen in the experiments [263] are
observed to form in the 1M-PFC model: for grooves parallel to the front, a frustrated triangular
structure of randomly alternating double and triple layers appears. For grooves perpendicular to
the front, the particles align themselves on a square lattice with the (11) orientation lying in the
interface, while for a π/4 declination of the grooves the same structure forms, however, now with
the (10) face lying in the front. Using larger wavelengths for the potential and adding a weak
transversal modulation, while starting from a homogeneous initial particle density, nucleation and
growth of wavy single and double chains resembling closely to the experiments [262] are seen [33]
(Figure 46).

Figure 45. (a) Single and multiple occupation of a chemically patterned periodic substrate by colloidal
particles as a function of increasing patch size in the experiments. (Reproduced with permission from Lee
et al. [260] © 2002 by Wiley.) (b) 1M-PFC simulations [33] with increasing diameter of circular attractive
potential wells. Reduced particle density maps are shown. The ratio of the potential well diameters relative
to the single occupation case has been 1, 1.25, 1.5, 2, 2.13, and 2.5. (Reproduced from L. Gránásy et al. [33]
© 2011 by Taylor & Francis.)
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Figure 46. Patterning in experiment vs. 1M-PFC simulation: (a) single and double particle chains evolving
in experiment due to capillary-immersion forces on the surface of a rippled substrate. (Reproduced with
permission from Mathur et al. [262] © 2006 by the American Chemical Society.) (b) The particle chains
forming in the 1M-PFC simulation performed with a tilted and wavy version of the potential described in the
text [33]. Only a fraction of the reduced particle density map is shown. (Reproduced from Gránásy et al. [33]
© 2011 by Taylor & Francis.)

Epitaxial growth on the (100) surface of a sc substrate has been investigated in 3D using the
1M-PFC model by Tegze et al. [42]. The lattice constant as of the substrate has been varied in a
range that incorporates the interatomic distance of the bulk fcc structure and the lattice constant
of the bulk bcc phase, where the (100) face of the sc structure is commensurable with the (100)

faces of the bulk fcc and bcc structures, respectively. A bct structure has grown, whose axial ratio
c/a varies continuously with the lattice constant of the substrate, where c and a are the lattice
constants of the bct structure perpendicular and parallel to the surface of the substrate, respectively.
At the matching values of as, fcc and bcc structures have been observed respectively, as observed
in colloid patterning experiments [264]. Analogous results have been obtained for the (100) face
of an fcc substrate using 1M-PFC simulations, however, for large lattice mismatch amorphous
phase mediated bcc nucleation has been seen [151].

Optical tweezers are used widely to realize 2D periodic templates for influencing colloidal
crystal aggregation in 3D [265]. Such templates, depending on the mismatch to the crystalline
structure evolving, may instigate the formation of single-crystal or polycrystalline structures [266].
Growth textures, obtained when supplementing the 1M-PFC model with a 5 × 5 flat square-lattice
template (realized by a periodic potential term), show remarkable resemblance to the experiments
(Figure 47) [267].

Figure 47. In-plane snapshot of crystalline aggregates grown on 5 × 5 square-lattice templates of
as/σfcc = 1.0, 1.1547, and 1.56 in 3D as predicted by 1M-PFC simulations [266]. Here, σfcc = 1.056. A
256 × 256 × 128 grid has been used. The visualization is as in Figure 25.
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5.2. Application to liquid crystals

The different forms of PFC models for orientable particles as discussed in Section 3.1.3 can
be applied to compute liquid crystalline systems under various circumstances. First of all, the
two-dimensional bulk calculations presented in Section 3.2.2 clearly need to be extended to 3D.
Moreover, a huge application area is found for confined systems. For instance, boundary conditions
to the director fields set by external walls can lead to forced topological defects of the orientational
order [268]. Here, PFC models for liquid crystals provide a flexible tool to access those numerically.
Next, liquid crystalline droplets in air or vacuum provide another type of confinement which
induces quite peculiar orientational fields (so-called tactoids [269] or smectic droplets [269]) and
again the PFC approach would provide a microscopic avenue to approach those. It would further
be interesting to generalize the PFC model on curved surfaces in order to explore the structure of
thin liquid crystalline bubbles, see, for example, references [270,271] for simulation predictions.
Last not least the structure of interfaces between two coexisting liquid crystalline phases needs
future attention, in particular for phases with positional order.

A further broad range of applications have to do with dynamics. One recent example was
performed in reference [171], where the CMA was employed to compute the dynamic coarsening
of a disturbed nematic phase. The time evolution of such a nematic phase is shown in the Schlieren
patterns in Figure 48.

More applications concern the dynamics of topological defects, nucleation in liquid crystalline
systems [272], and the orientational dynamics induced by external switching fields [273]. Hence
a flourishing future of many more PFC computations for liquid crystals is still lying ahead.

6. Summary and outlook

Motivated by the spectacular advances phase-field-crystal modelling has made in recent years,
we have reviewed its present status. Besides presenting the original PFC model together with its

Figure 48. Time evolution of the Schlieren pattern ∝ Q2
12 in the x1-x2-plane, which exhibits a dynamical

coarsening. The symbol t0 denotes a characteristic time. (Reproduced with permission from Yabunaka and
Araki [171] © 2011 by the American Physical Society.)
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derivation from DDFT, we have reviewed many of its numerous extensions, including those aimed
at describing binary solidification, vacancy transport (VPFC), anisotropic molecules (APFC),
liquid crystals, and a quantitative description of real systems. We have reviewed, furthermore, a
broad range of applications for metallic and soft matter systems (colloids and liquid crystals), and
for phenomena like the glass transition, and the formation of foams. We have discussed open issues
such as coupling to hydrodynamics and the possibility of making quantitative PFC predictions for
real materials. The main question at present is what further steps need yet to be made to turn the
PFC-type models into even more potent modelling tools.

To summarize the present state of affairs, it seems appropriate to recall some of the concluding
remarks of a Centre Européen de Calcul Atomique et Moléculaire (CECAM) workshop dedicated
to DDFT- and PFC-type approaches held in 2009 in Lausanne [202]. It appears that despite the
advances made meantime, some of the major issues identified there need yet further attendance.
These are the following:

(i) How to build numerically efficient, quantitative PFC models for a broad spectrum of metallic
materials? The PFC models incorporate microscopic physics in a phenomenological manner. The
respective local free-energy functional and the simplified dynamics lead to equations of motion that
can be handled fairly efficiently with advanced numerical methods so that simulations containing
up to a few times 107 particles/atoms can be performed with relative ease. A major aim here is
to develop a methodology for tuning crystal symmetry, lattice spacing, elastic constants, surface
energy, dislocation core energy, dislocation mobility, etc. without sacrificing numerical efficiency.
Along this line, methods have been proposed for constructing PFC free energies that allow for
the tuning of the crystal structure [144,146,147]. The amplitude equations represent an appealing
alternative [19,31,141,181], in which the density field is expressed in terms of slowly-varying
amplitudes, modulated by the fundamental spatial periodicity of particle density.As demonstrated,
this approach realizes a truly multi-scale approach to phase transitions in freezing liquids [20].
Alternatively, one can work directly with the scaled density field of the PFC models and introduce
additional model parameters, which can be fitted so that a required set of physical properties is
recovered, as done in the case of pure bcc Fe [142].

(ii) How to construct effective, low-frequency representations from DFT/DDFT? Provided
that one had an accurate and predictive density functional that incorporates interaction potentials
between the constituent species in a multi-component system, it would become possible to develop
an effective description that enables quantitative simulations for microscopically-informed con-
tinuum systems that evolve on diffusive time scales. However, one needs to develop first such
free-energy functionals. Next, the dynamics of the relevant degrees of freedom should be pro-
jected out from the full DDFT description. It may be expected on physical grounds that the shape
of a single density peak would relax much faster than the distance between different peak centres.
Accordingly, one could “slave” the high-frequency modes associated with the peak shapes to the
more slowly evolving modes with low spatial frequencies.

(iii) The role of fluctuations in DDFT and PFC modelling. There is a continuing debate about
the role of noise in the DDFT- and PFC-type models [201]. Derivations of DDFT from either the
Smoluchowski level [106] or within the projection operator technique [83] lead to a determinis-
tic EOM without any noise an approximation that becomes problematic near the critical point,
or during nucleation, where the system has to leave a metastable free-energy minimum. In the
former case fluctuations are needed to obtain the correct critical behaviour, whereas in the latter
case, fluctuations are needed to establish an escape route of the system from a metastable phase.
Other approaches treat fluctuations on a more phenomenological level. Often, however, the noise
strength, though fundamentally correlated with the thermal energy, is treated as a phenomeno-
logical fitting parameter [34,57]. This is a fundamental problem, shared by all DDFT and PFC
approaches. We note that the addition of noise to the EOM in continuum models is not without



734 H. Emmerich et al.

conceptual difficulties [203], even if noise is discretized properly during numerical solution. For
example, in the presence of noise, the equilibrium properties of the system change. Furthermore,
transformation kinetics generally depends on the spatial and temporal steps and in the limit of
infinitely small steps in 3D the free energy of the PFC systems diverges, leading to an ultravio-
let “catastrophe”. Evidently, an appropriate “ultraviolet cutoff”, that is, filtering out the highest
frequencies, is required to regularize the unphysical singularity. Here, a straightforward choice
for the cut-off length is the interparticle/interatomic distance, which then removes the unphysi-
cal, small wavelength fluctuations [27,28,42,177]. A more elegant handling of the problem is via
renormalizing the model parameters so that with noise one recovers the “bare” physical properties
(as outlined for the SH model in reference [205]). Further systematic investigations are yet needed
to settle this issue.
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Notes
1. It is interesting to note that there are also mesoscopic particle systems with Newtonian dynamics, which

are virtually undamped. These are realized in the so-called complex plasmas [75,76], where dust particles
are dispersed and levitated in a plasma.

2. This follows from the representation (9) under consideration of the translational and rotational
symmetries of the isotropic bulk fluid that also apply to the direct correlation function c(1)(r1) = const.

3. More refined approaches include also the third-order term [115] with an approximate triplet direct
correlation function [116,117].

4. However, one should also note that density fluctuations, which are, for example, embodied in the liquid
structure factor, are not reproduced by Equation (33), since the one-particle density is the only variable
here.

5. Note that the order-parameter field ψ(r) introduced here is not identical with the field ψ̃(r̃) in
Equation (1), although both fields are dimensionless.

6. This Taylor approximation of the logarithm has the serious consequence that the non-negative-density
constraint ρ(r) � 0 gets lost in the PFC model.

7. A recent comparison between DFT and PFC models for the structure of the hard-sphere crystal-fluid
interface was performed in reference [134].

8. To keep the notation simple, we ignore F̄ and write F instead of �F throughout this article.
9. Turnbull’s coefficient CT is a reduced liquid-solid interfacial free energy defined via the relationship

γls = CT(�Hf/(N
1/3
A v2/3

m )), where γls, �Hf , NA, and vm are the total liquid-solid interfacial free energy,
the molar heat of fusion, the Avogadro number, and the molar volume, respectively. CT is expected to
depend only on the crystal structure. Recent results indicate that besides structure the interaction potential
also has influence on its magnitude.
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Appendix. Coefficients in the PFC models for liquid crystals

A.1 PFC model for liquid crystals in 2D
In the contributions (94)–(96) of the local scaled excess free-energy density, the coefficients

A1 = 8 M0
0(1) , A2 = −2 M0

0(3) , A3 = 1
8 M0

0(5) (A1)

are associated with a gradient expansion of ψ2(r). These coefficients also appear in a different form in the
original PFC model [26]. The further coefficients are given by [160,274]

B1 = 4(M1−1(2) − M0
1(2)) , (A2)

B2 = 2(M1
1(2) − M2−1(2)) , (A3)

B3 = −M2−2(3) − M0
2(3) , (A4)

C1 = 4 M1
0(1) , C2 = M1

0(3) − 1
2 M1−2(3) , C3 = −M1−2(3) , (A5)

and

D1 = 2 M2
0(1) , D2 = −M2

0(3) . (A6)

So far, all these coefficients can also be obtained by using the second-order Ramakrishnan-Yussouff functional
for the excess free energy. The remaining coefficients, however, result from higher-order contributions in the
functional Taylor expansion [160]. In third order, one obtains for the homogeneous terms the coefficients

E1 = 32 M̂00
00 , (A7)

E2 = 16(M̂−11
00 + 2 M̂01

00) , (A8)

E3 = 8(M̂−22
00 + 2 M̂02

00) , (A9)

E4 = 8(2 M̂−21
00 + M̂11

00) (A10)
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and for the terms containing a gradient the coefficients

F1 = 16(M̃−10
01 − 2 M̃0−1

01 + M̃00
01) , (A11)

F2 = 16(M̃−21
01 − M̃0−2

01 + M̃01
01 − M̃1−2

01 ) , (A12)

F3 = −16(M̃−20
01 − M̃−21

01 − M̃01
01 + M̃10

01) , (A13)

F4 = −8(M̃−1−1
01 − 2 M̃−11

01 + M̃1−1
01 ) , (A14)

F5 = −4(M̃−2−1
01 − M̃−22

01 − M̃−12
01 + M̃2−1

01 ) , (A15)

F6 = 8(M̃−22
01 − M̃−1−2

01 + M̃−12
01 − M̃2−2

01 ) . (A16)

In fourth order, only homogeneous terms are kept. The corresponding coefficients are

G1 = 128 M̂000
000 , (A17)

G2 = 192(M̂−101
000 + M̂001

000) , (A18)

G3 = 96(M̂−202
000 + M̂002

000) , (A19)

G4 = 96(2 M̂−201
000 + M̂−211

000 + M̂011
000) , (A20)

G5 = 48(M̂−212
000 + M̂−112

000 ) , (A21)

G6 = 48 M̂−111
000 , (A22)

G7 = 12 M̂−222
000 . (A23)

All the coefficients from above are linear combinations of moments of the Fourier expansion coefficients of
the direct correlation functions. These moments are defined through

Mmn

ln (αn) = π2n+1ρn+1
ref

(
n∏

i=1

∫ ∞

0
dri rαi

i

)
c̃(n+1)

ln,mn (rn) (A24)

with the multi-index notation Xn = (X1, . . . , Xn) for X ∈ {l, m, r, 1, α, φ, φR} and the abbreviations
M̂mn

ln = Mmn

ln (1n) and M̃m1m2
l1l2

= Mm1m2
l1l2

(1, 2). The expansion coefficients of the direct correlation functions
are given by

c̃(n+1)

ln,mn (rn) = 1

(2π)2n

∫ 2π

0
dφn

R

∫ 2π

0
dφn c(n+1)(rn, φn

R, φn)e−i(ln·φn
R+mn·φn) (A25)

with r1 − ri+1 = Riû(ϕRi ), ûi = û(ϕi), φRi = ϕ1 − ϕRi , and φi = ϕ1 − ϕi+1.
When the system is apolar, the modulus P(r) of the polarization P(r) is zero and its orientation p̂(r) is not

defined, while the direction n̂(r) associated with quadrupolar order still exists. Then, symmetry considerations
lead to the equalities

c̃(2)
−1,1(R) = c̃(2)

1,0(R) , c̃(2)
−1,2(R) = c̃(2)

1,1(R) , c̃(2)
−2,2(R) = c̃(2)

2,0(R) (A26)

between expansion coefficients of the direct pair-correlation function and to the equations

M1−1(2) = M0
1(2) , M2−1(2) = M1

1(2) , M2−2(2) = M0
2(2) (A27)

for the generalized moments. A consequence of these equations is that the coefficients B1 and B2 vanish and
B3 becomes more simple.
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A.2 PFC model for liquid crystals in 3D
The coefficients in Equation (105) appear in three different groups. The first group consists of the three
coefficients

A1 = 8 �000(0) , A2 = − 4
3 �000(2) , A3 = 1

15 �000(4) , (A28)

that are already known from the original PFC model [26] and belong to the gradient expansion of the
translational density. In the next group, the two coefficients

B1 = 16

15
√

5
�220(0) , B2 = −16

15
�022(2) , (A29)

that go along with the nematic tensor and the coupling of its gradient with the gradient of the translational
density, are collected. The last group contains the Frank constants

K̃1 = 16

15

√
2

35
�222(2) , K̃2 = 8

45
√

5
�220(2) + 1

3
K̃1 , (A30)

that appear in the Frank free-energy density [158,170]. All these coefficients are expressed in terms of the
generalized moments

�l1l2l(n) = π3/2ρ2
ref

∫ ∞

0
dr rn+2ωl1l2l(r) (A31)

with the expansion coefficients

ωl1l2l(r) =
√

4π

2l + 1

min{l1,l2}∑
m=− min{l1,l2}

C(l1, l2, l, m, −m, 0)

×
∫

dû1

∫
dû2 c(2)(rê3, û1, û2)Ȳl1m(û1)Yl2−m(û2) , (A32)

where the symbol C(l1, l2, l, m1, m2, m) denotes a Clebsch-Gordan coefficient [275], Ylm(û) is a spherical
harmonic, ê3 stands for the Cartesian unit vector co-directional with the x3-axis, and · denotes complex
conjugation.

As before, equalities between generalized moments with different index-combinations, that can be derived
using symmetry considerations [68], have been taken into account in order to reduce the set of generalized
moments in Equation (105) to its seven independent members.
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