Gyula Tóth1, György Tegze2, Tamás Pusztai2, László Gránásy2,3
1Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
2Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
3BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
A simple dynamical density functional theory is used to investigate freezing of an undercooled liquid in the presence of a crystalline substrate. We find that the adsorption of the crystalline phase on the substrate, the contact angle, and the height of the nucleation barrier are nonmonotonic functions of the lattice constant of the substrate. We show that the free-growth-limited model of particle-induced freezing by Greer et al. [Acta Mater. 48, 2823 (2000)] is valid for larger nanoparticles and a small anisotropy of the interface free energy. Faceting due to the small size of the foreign particle or a high anisotropy decouples free growth from the critical size of homogeneous nuclei.