Welcome to our new website
2014, May 25 - 17:35This is the first draft of our new website. We are still working on it, uploading the publications, etc. Have a look at our old website as well: http://www.szfki.hu/~grana/crystal.html
This is the first draft of our new website. We are still working on it, uploading the publications, etc. Have a look at our old website as well: http://www.szfki.hu/~grana/crystal.html
1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
1Laboratoire Physique de la Matière Condensée, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex, France
2Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
3Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
4B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Germany
1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
Topics: Phase field crystal
1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
3B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Germany
Topics: Heterogeneous nucleation
1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
We investigated the Fe-Fe2Ti eutectic microstructure obtained by Directed Energy Deposition (DED) with a hypereutectic composition of Fe-17.6 at.% Ti. Ultrafine lamellar spacings as low as 200 nm were achieved, features which otherwise can only be obtained in thin specimens, e.g. by suction casting. However, at interlayer boundaries (ILBs) a globular morphology of the primary Fe2Ti phase is observed with halos of the Fe phase. For the given DED conditions the crystalline structure is thus discontinuous across the ILBs. Both 2D and 3D analysis methods were used to quantify the microstructure, including high resolution synchrotron holographic X-ray computed tomography (HXCT). The generic behaviour of eutectic systems under conditions that qualitatively correspond to those of laser additive manufacturing was explored by phase-field modelling for selected nucleation scenarios and alloy compositions spanning from eutectic to hyper-eutectic. While providing valuable insights into microstructure formation, the simulations point out the need to further deepen our understanding about melting under additive manufacturing conditions in order to implement suitable nucleation and / or free growth models. The simulations also show that globular ILBs can be prevented when using exactly eutectic alloy compositions.