Latest publications

Free energy of the bcc-liquid interface and the Wulff shape as predicted by the phase-field crystal model

Frigyes Podmaniczky1, Gyula Tóth2, Tamás Pusztai1, László Gránásy1,3

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
3BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

The Euler-Lagrange equation of the phase-field crystal (PFC) model has been solved under appropriate boundary conditions to obtain the equilibrium free energy of the body centered cubic crystal-liquid interface for 18 orientations at various reduced temperatures in the range ε∈[0,0.5]. While the maximum free energy corresponds to the {100} orientation for all ε values, the minimum is realized by the {111} direction for smaller ε(<0.13), and by the {211} orientation for higher ε. The predicted dependence on the reduced temperature is consistent with the respective mean field critical exponent. The results are fitted with an eight-term Kubic harmonic series, and are used to create stereographic plots displaying the anisotropy of the interface free energy. We have also derived the corresponding Wulff shapes that vary with increasing ε from sphere to a polyhedral form that differs from the rhombo-dodecahedron obtained previously by growing a bcc seed until reaching equilibrium with the remaining liquid.

Spiraling eutectic dendrites

Tamás Pusztai1, László Rátkai1, Attila Szállás1, László Gránásy1,2

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

Eutectic dendrites forming in a model ternary system have been studied using the phase-field theory. The eutectic and one-phase dendrites have similar forms, and the tip radius scales with the interface free energy as for one-phase dendrites. The steady-state eutectic patterns, appearing on these two-phase dendrites, include concentric rings and single- to multiarm spirals from which the fluctuations choose; a stochastic phenomenon characterized by a peaked probability distribution. The number of spiral arms correlates with the tip radius and the kinetic anisotropy.

Topics: Spiral eutectic dendrites

Heterogeneous Crystal Nucleation: The Effect of Lattice Mismatch

Gyula Tóth1, György Tegze2, Tamás Pusztai2, László Gránásy2,3

1Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
2Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
3BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

A simple dynamical density functional theory is used to investigate freezing of an undercooled liquid in the presence of a crystalline substrate. We find that the adsorption of the crystalline phase on the substrate, the contact angle, and the height of the nucleation barrier are nonmonotonic functions of the lattice constant of the substrate. We show that the free-growth-limited model of particle-induced freezing by Greer et al. [Acta Mater. 48, 2823 (2000)] is valid for larger nanoparticles and a small anisotropy of the interface free energy. Faceting due to the small size of the foreign particle or a high anisotropy decouples free growth from the critical size of homogeneous nuclei.

Topics: Heterogeneous nucleation, Phase field crystal

Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview

Heike Emmerich1, Hartmut Löwen2, Raphael Wittkowski2, Thomas Gruhn1, Gyula Tóth3, György Tegze4, László Gránásy4,5

1Lehrstuhl für Material- und Prozesssimulation, Universität Bayreuth, D-95440 Bayreuth, Germany
2Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
3Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
4Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
5BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently fol- lowing the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundamentals for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.

Topics: Phase field crystal

Selected issues of phase-field crystal simulations

Heike Emmerich1, László Gránásy2,3, Hartmut Löwen4

1Lehrstuhl für Material- und Prozesssimulation, Universität Bayreuth, D-95440 Bayreuth, Germany
2Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
3BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
4Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany

In this contribution our focus is on the phase-field crystal method, which can be viewed as the youngest methodology in the field of interface computation based on recent work by Elder et al. (Phys. Rev. Lett. 88, 245701 (2002)). It bridges the gap between the molecular simulation approaches and the phase-field approach by operating on diffusive time scales yet atomic length scales. Here we review the fundaments of the phase-field crystal method as well as different models established so far with the aim to capture the main features of the wide range of phase diagrams found in materials science more and more comprehensively.

Amorphous Nucleation Precursor in Highly Nonequilibrium Fluids

Gyula Tóth1, Tamás Pusztai2, György Tegze2, Gergely Tóth3, László Gránásy2,4

1Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
2Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
3Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest, Hungary
4BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

Dynamical density-functional simulations reveal structural aspects of crystal nucleation in undercooled liquids: The first appearing solid is amorphous, which promotes the nucleation of bcc crystals but suppresses the appearance of the fcc and hcp phases. These findings are associated with features of the effective interaction potential deduced from the amorphous structure.

Topics: Phase field crystal

Faceting and Branching in 2D Crystal Growth

György Tegze1, Gyula Tóth2, László Gránásy1,3

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
3BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

Using atomic scale time-dependent density functional calculations we confirm that both diffusion-controlled and diffusionless crystallization modes exist in simple 2D systems. We provide theoretical evidence that a faceted to nonfaceted transition is coupled to these crystallization modes, and faceting is governed by the local supersaturation at the fluid-crystalline interface. We also show that competing modes of crystallization have a major influence on mesopattern formation. Irregularly branched and porous structures are emerging at the crossover of the crystallization modes. The proposed branching mechanism differs essentially from dendritic fingering driven by diffusive instability.

Topics: Phase field crystal

Ginzburg-Landau-type multiphase field model for competing fcc and bcc nucleation

Gyula Tóth1, J.R. Morris2, László Gránásy3,4

1Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
2Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
3Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
4BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

We address crystal nucleation and fcc-bcc phase selection in alloys using a multiphase field model that relies on Ginzburg-Landau free energies of the liquid-fcc, liquid-bcc, and fcc-bcc subsystems, and determine the properties of the nuclei as a function of composition, temperature, and structure. With a realistic choice for the free energy of the fcc-bcc interface, the model predicts well the fcc-bcc phase-selection boundary in the Fe-Ni system.

Tuning the structure of non-equilibrium soft materials by varying the thermodynamic driving force for crystal ordering

György Tegze1, László Gránásy1,2, Gyula Tóth3, Jack F. Douglas4, Tamás Pusztai1

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
3Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.
4Polymers Division, National Institute of Standards and Technology,Gaithersburg, MD, 20899, USA

The present work explores the ubiquitous morphological changes in crystallizing systems with increasing thermodynamic driving force based on a novel dynamic density functional theory. A colloidal 'soft' material is chosen as a model system for our investigation since there are careful colloidal crystallization observations at a particle scale resolution for comparison, which allows for a direct verification of our simulation predictions. We particularly focus on a theoretically unanticipated, and generic, morphological transition leading to progressively irregular-shaped single crystals in both colloidal and polymeric materials with an increasing thermodynamic driving force. Our simulation method significantly extends previous 'phase field' simulations by incorporating a minimal description of the 'atomic' structure of the material, while allowing simultaneously for a description of large scale crystal growth. We discover a 'fast' mode of crystal growth at high driving force, suggested before in experimental colloidal crystallization studies, and find that the coupling of this crystal mode to the well-understood 'diffusive' or 'slow' crystal growth mode (giving rise to symmetric crystal growth mode and dendritic crystallization as in snowflakes by the Mullins-Sekerka instability) can greatly affect the crystal morphology at high thermodynamic driving force. In particular, an understanding of this interplay between these fast and slow crystal growth modes allows us to describe basic crystallization morphologies seen in both colloidal suspensions with increasing particle concentration and crystallizing polymer films with decreasing temperature: compact symmetric crystals, dendritic crystals, fractal-like structures, and then a return to compact symmetric single crystal growth again.

Topics: Phase field crystal

Phase-field crystal modelling of crystal nucleation, heteroepitaxy and patterning

László Gránásy1,2, György Tegze1, Gyula Tóth3, Tamás Pusztai1

1Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, Budapest H-1525, Hungary
2BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
3Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.

A simple dynamical density functional theory, the phase-field crystal (PFC) model, was used to describe homogeneous and heterogeneous crystal nucleation in two-dimensional (2D) monodisperse colloidal systems and crystal nucleation in highly compressed Fe liquid. External periodic potentials were used to approximate inert crystalline substrates in addressing heterogeneous nucleation. In agreement with experiments in 2D colloids, the PFC model predicts that in 2D supersaturated liquids, crystalline freezing starts with homogeneous crystal nucleation without the occurrence of the hexatic phase. At extreme supersaturations, crystal nucleation happens after the appearance of an amorphous precursor both in two and three dimensions. Contrary to expectations based on the classical nucleation theory, it is shown that corners are not necessarily favourable places for crystal nucleation. Finally, it is shown that by adding external potential terms to the free energy, the PFC theory can be used to model colloid patterning experiments.

Topics: Phase field crystal

Pages